算法系列15天速成——第五天 五大经典查找【中】

    大家可否知道,其实查找中有一种O(1)的查找,即所谓的秒杀。

 

哈希查找:

 

    对的,他就是哈希查找,说到哈希,大家肯定要提到哈希函数,呵呵,这东西已经在我们脑子里面形成

固有思维了。大家一定要知道“哈希“中的对应关系。

     比如说: ”5“是一个要保存的数,然后我丢给哈希函数,哈希函数给我返回一个”2",那么此时的”5“

和“2”就建立一种对应关系,这种关系就是所谓的“哈希关系”,在实际应用中也就形成了”2“是key,”5“是value。

    那么有的朋友就会问如何做哈希,首先做哈希必须要遵守两点原则:

          ①:  key尽可能的分散,也就是我丢一个“6”和“5”给你,你都返回一个“2”,那么这样的哈希函数不尽完美。

          ②: 哈希函数尽可能的简单,也就是说丢一个“6”给你,你哈希函数要搞1小时才能给我,这样也是不好的。

 

其实常用的做哈希的手法有“五种”:

第一种:”直接定址法“。

                  很容易理解,key=Value+C; 这个“C"是常量。Value+C其实就是一个简单的哈希函数。

第二种:“除法取余法”。

                  很容易理解, key=value%C;解释同上。

第三种:“数字分析法”。

                  这种蛮有意思,比如有一组value1=112233,value2=112633,value3=119033,

                  针对这样的数我们分析数中间两个数比较波动,其他数不变。那么我们取key的值就可以是

                  key1=22,key2=26,key3=90。 

第四种:“平方取中法”。此处忽略,见名识意。

第五种:“折叠法”。

                 这种蛮有意思,比如value=135790,要求key是2位数的散列值。那么我们将value变为13+57+90=160,

                 然后去掉高位“1”,此时key=60,哈哈,这就是他们的哈希关系,这样做的目的就是key与每一位value都相

                 关,来做到“散列地址”尽可能分散的目地。

 

正所谓常在河边走,哪有不湿鞋。哈希也一样,你哈希函数设计的再好,搞不好哪一次就撞楼了,那么抛给我们的问题

就是如果来解决“散列地址“的冲突。

 

其实解决冲突常用的手法也就2种:

 

第一种: “开放地址法“。

                 所谓”开放地址“,其实就是数组中未使用的地址。也就是说,在发生冲突的地方,后到的那个元素(可采用两种方式

                 :①线性探测,②函数探测)向数组后寻找"开放地址“然后把自己插进入。

 

第二种:”链接法“。

                这个大家暂时不懂也没关系,我就先介绍一下原理,就是在每个元素上放一个”指针域“,在发生冲突的地方,后到的那

               个元素将自己的数据域抛给冲突中的元素,此时冲突的地方就形成了一个链表。

 

上面啰嗦了那么多,也就是想让大家在”设计哈希“和”解决冲突“这两个方面提一点参考和手段。

 

那么下面就上代码了,

     设计函数采用:”除法取余法“。

     冲突方面采用:”开放地址线性探测法"。

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HashSearch
{
    class Program
    {
        //“除法取余法”
        static int hashLength = 13;

        //原数据
        static List<int> list = new List<int>() { 13, 29, 27, 28, 26, 30, 38 };

        //哈希表长度
        static int[] hash = new int[hashLength];

        static void Main(string[] args)
        {
            //创建hash
            for (int i = 0; i < list.Count; i++)
            {
                InsertHash(hash, hashLength, list[i]);
            }

            Console.WriteLine("Hash数据:" + string.Join(",", hash));

            while (true)
            {
                Console.WriteLine("\n请输入要查找数字:");
                int result = int.Parse(Console.ReadLine());
                var index = SearchHash(hash, hashLength, result);

                if (index != -1)
                    Console.WriteLine("数字" + result + "在索引的位置是:" + index);
                else
                    Console.WriteLine("呜呜," + result + " 在hash中没有找到!");

            }
        }

        ///<summary>
/// Hash表检索数据
///</summary>
///<param name="dic"></param>
///<param name="hashLength"></param>
///<param name="key"></param>
///<returns></returns>
        static int SearchHash(int[] hash, int hashLength, int key)
        {
            //哈希函数
            int hashAddress = key % hashLength;

            //指定hashAdrress对应值存在但不是关键值,则用开放寻址法解决
            while (hash[hashAddress] != 0 && hash[hashAddress] != key)
            {
                hashAddress = (++hashAddress) % hashLength;
            }

            //查找到了开放单元,表示查找失败
            if (hash[hashAddress] == 0)
                return -1;
            return hashAddress;

        }

        ///<summary>
///数据插入Hash表
///</summary>
///<param name="dic">哈希表</param>
///<param name="hashLength"></param>
///<param name="data"></param>
        static void InsertHash(int[] hash, int hashLength, int data)
        {
            //哈希函数
            int hashAddress = data % 13;

            //如果key存在,则说明已经被别人占用,此时必须解决冲突
            while (hash[hashAddress] != 0)
            {
                //用开放寻址法找到
                hashAddress = (++hashAddress) % hashLength;
            }

            //将data存入字典中
            hash[hashAddress] = data;
        }
    }
}

结果:

 

 

索引查找:

     一提到“索引”,估计大家第一反应就是“数据库索引”,对的,其实主键建立“索引”,就是方便我们在海量数据中查找。

关于“索引”的知识,估计大家都比我清楚,我就简单介绍下。

我们自己写算法来实现索引查找时常使用的三个术语:

第一:主表,      这个很简单,要查找的对象。

第二:索引项,   一般我们会用函数将一个主表划分成几个子表,每个子表建立一个索引,这个索引叫做索引项。

第三:索引表,    索引项的集合也就是索引表。

 

一般“索引项”包含三种内容:index,start,length

第一: index,也就是索引指向主表的关键字。

第二:start, 也就是index在主表中的位置。

第三:length, 也就是子表的区间长度。

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace IndexSearchProgram
{
    class Program
    {
        ///<summary>
/// 索引项实体
///</summary>
        class IndexItem
        {
            //对应主表的值
            public int index;
            //主表记录区间段的开始位置
            public int start;
            //主表记录区间段的长度
            public int length;
        }

        static void Main(string[] args)
        {
            Console.WriteLine("原数据为:" + string.Join(",", students));

            int value = 205;

            Console.WriteLine("\n插入数据" + value);

            //将205插入集合中,过索引
            var index = insert(value);

            //如果插入成功,获取205元素所在的位置
            if (index == 1)
            {
                Console.WriteLine("\n插入后数据:" + string.Join(",", students));
                Console.WriteLine("\n数据元素:205在数组中的位置为 " + indexSearch(205) + "位");
            }

            Console.ReadLine();
        }

        ///<summary>
/// 学生主表
///</summary>
        static int[] students = {
                                   101,102,103,104,105,0,0,0,0,0,
                                   201,202,203,204,0,0,0,0,0,0,
                                   301,302,303,0,0,0,0,0,0,0
                                };
        ///<summary>
///学生索引表
///</summary>
        static IndexItem[] indexItem = {
                                  new IndexItem(){ index=1, start=0, length=5},
                                  new IndexItem(){ index=2, start=10, length=4},
                                  new IndexItem(){ index=3, start=20, length=3},
                                };

        ///<summary>
/// 查找数据
///</summary>
///<param name="key"></param>
///<returns></returns>
        public static int indexSearch(int key)
        {
            IndexItem item = null;

            // 建立索引规则
            var index = key / 100;

            //首先去索引找
            for (int i = 0; i < indexItem.Count(); i++)
            {
                if (indexItem[i].index == index)
                {
                    item = new IndexItem() { start = indexItem[i].start, length = indexItem[i].length };
                    break;
                }
            }

            //如果item为null,则说明在索引中查找失败
            if (item == null)
                return -1;

            for (int i = item.start; i < item.start + item.length; i++)
            {
                if (students[i] == key)
                {
                    return i;
                }
            }
            return -1;
        }

        ///<summary>
/// 插入数据
///</summary>
///<param name="key"></param>
///<returns></returns>
        public static int insert(int key)
        {
            IndexItem item = null;
            //建立索引规则
            var index = key / 100;
            int i = 0;
            for (i = 0; i < indexItem.Count(); i++)
            {
                //获取到了索引
                if (indexItem[i].index == index)
                {
                    item = new IndexItem()
                    {
                        start = indexItem[i].start,
                        length = indexItem[i].length
                    };
                    break;
                }
            }
            if (item == null)
                return -1;
            //更新主表
            students[item.start + item.length] = key;
            //更新索引表
            indexItem[i].length++;
            return 1;
        }
    }
}

结果:

 

ps: 哈希查找时间复杂度O(1)。

       索引查找时间复杂度:就拿上面的Demo来说是等于O(n/3)+O(length)

时间: 2024-11-03 20:52:00

算法系列15天速成——第五天 五大经典查找【中】的相关文章

算法系列15天速成 第五天 五大经典查找【中】_相关技巧

哈希查找:     对的,他就是哈希查找,说到哈希,大家肯定要提到哈希函数,呵呵,这东西已经在我们脑子里面形成固有思维了.大家一定要知道"哈希"中的对应关系.     比如说: "5"是一个要保存的数,然后我丢给哈希函数,哈希函数给我返回一个"2",那么此时的"5"和"2"就建立一种对应关系,这种关系就是所谓的"哈希关系",在实际应用中也就形成了"2"是key,&qu

算法系列15天速成——第四天 五大经典查找【上】

在我们的生活中,无处不存在着查找,比如找一下班里哪个mm最pl,猜一猜mm的芳龄....... 对的这些都是查找.   在我们的算法中,有一种叫做线性查找. 分为:顺序查找.         折半查找.   查找有两种形态: 分为:破坏性查找,   比如有一群mm,我猜她们的年龄,第一位猜到了是23+,此时这位mm已经从我脑海里面的mmlist中remove掉了.                             哥不找23+的,所以此种查找破坏了原来的结构.        非破坏性查找,

算法系列15天速成——第三天 七大经典排序【下】

今天跟大家聊聊最后三种排序: 直接插入排序,希尔排序和归并排序.   直接插入排序:        这种排序其实蛮好理解的,很现实的例子就是俺们斗地主,当我们抓到一手乱牌时,我们就要按照大小梳理扑克,30秒后,    扑克梳理完毕,4条3,5条s,哇塞......  回忆一下,俺们当时是怎么梳理的.        最左一张牌是3,第二张牌是5,第三张牌又是3,赶紧插到第一张牌后面去,第四张牌又是3,大喜,赶紧插到第二张后面去,    第五张牌又是3,狂喜,哈哈,一门炮就这样产生了.      

算法系列15天速成 第三天 七大经典排序【下】_相关技巧

直接插入排序:        这种排序其实蛮好理解的,很现实的例子就是俺们斗地主,当我们抓到一手乱牌时,我们就要按照大小梳理扑克,30秒后,    扑克梳理完毕,4条3,5条s,哇塞......  回忆一下,俺们当时是怎么梳理的.        最左一张牌是3,第二张牌是5,第三张牌又是3,赶紧插到第一张牌后面去,第四张牌又是3,大喜,赶紧插到第二张后面去,    第五张牌又是3,狂喜,哈哈,一门炮就这样产生了.      怎么样,生活中处处都是算法,早已经融入我们的生活和血液.       

算法速成(五)五大经典查找之哈希查找

大家可否知道,其实查找中有一种O(1)的查找,即所谓的秒杀. 哈希查找: 对的, 他就是哈希查找,说到哈希,大家肯定要提到哈希函数,呵呵,这东西已经在我们脑子里面形成 固有思维了.大家一定要知道"哈希"中的对应关系. 比如说: "5"是一个要保存 的数,然后我丢给哈希函数,哈希函数给我返回一个"2",那么此时的"5" 和"2"就 建立一种对应关系,这种关系就是所谓的"哈希关系",在实际应

算法系列15天速成——第七天 线性表【上】

原文:算法系列15天速成--第七天 线性表[上]   人活在社会上不可能孤立,比如跟美女有着千丝万缕的关系,有的是一对一,有的是一对多,有的是多对多. 哈哈,我们的数据也一样,存在这三种基本关系,用术语来说就是: <1>  线性关系. <2>  树形关系. <3>  网状关系.   一: 线性表       1 概念:                  线性表也就是关系户中最简单的一种关系,一对一.                   如:学生学号的集合就是一个线性表.

算法速成(四)五大经典查找之线性查找

在我们的生活中,无处不存在着查找,比如找一下班里哪个mm最pl,猜一猜mm的芳龄....... 对的 这些都是查找. 在我们的算法中,有一种叫做线性查找. 分为:顺序查找. 折 半查找. 查找有两种形态: 分为:破坏性查找,   比如有一群mm,我猜她们的 年龄,第一位猜到了是23+,此时这位mm已经从我脑海里面的mmlist中remove掉了. 哥不找23+ 的,所以此种查找破坏了原来的结构. 非破坏性查找, 这种就反之了,不破坏结构. 顺序查找: 这种非常简单,就是过一下数组,一个一个的比,

算法系列15天速成——第十五天 图【下】(大结局)

一: 最小生成树 1. 概念     首先看如下图,不知道大家能总结点什么.     对于一个连通图G,如果其全部顶点和一部分边构成一个子图G1,当G1满足:        ① 刚好将图中所有顶点连通.②顶点不存在回路.则称G1就是G的"生成树".            其实一句话总结就是:生成树是将原图的全部顶点以最小的边连通的子图,这不,如下的连通图可以得到下面的两个生成树.        ② 对于一个带权的连通图,当生成的树不同,各边上的权值总和也不同,如果某个生成树的权值最小,

算法系列15天速成——第十四天 图【上】

       今天来分享一下图,这是一种比较复杂的非线性数据结构,之所以复杂是因为他们的数据元素之间的关系是任意的,而不像树那样 被几个性质定理框住了,元素之间的关系还是比较明显的,图的使用范围很广的,比如网络爬虫,求最短路径等等,不过大家也不要胆怯, 越是复杂的东西越能体现我们码农的核心竞争力.               既然要学习图,得要遵守一下图的游戏规则. 一: 概念        图是由"顶点"的集合和"边"的集合组成.记作:G=(V,E): <1