Hadoop-2-HDFS+MapReduce+Hive+HBase版本搭配

问题描述

Hadoop-2-HDFS+MapReduce+Hive+HBase版本搭配 Hadoop是用2版本的,不知道这个版本和Hive、Hbase哪些版本集成时比较方便。我也是刚刚接触这些东西,能否提供一些集成资料或者在集成时应该注意什么。谢谢!

解决方案

http://hae.iteye.com/blog/2079508

时间: 2024-11-13 07:52:40

Hadoop-2-HDFS+MapReduce+Hive+HBase版本搭配的相关文章

HBase伪分布式安装(HDFS)+ZooKeeper安装+HBase数据操作+HBase架构体系

HBase1.2.2伪分布式安装(HDFS)+ZooKeeper-3.4.8安装配置+HBase表和数据操作+HBase的架构体系+单例安装,记录了在Ubuntu下对HBase1.2.2的实践操作,HBase的安装到数据库表的操作.包含内容1.HBase单例安装2.HBase伪分布式安装(基于Hadoop的HDFS)过程,3.HBase的shell编程,对HBase表的创建,删除等的命令,HBase对数据的增删查等操作.4.简单概述了Hbase的架构体系.5.zookeeper的单例安装和常用操

详解Hadoop核心架构HDFS+MapReduce+Hbase+Hive

通过对Hadoop分布式计算平台最核心的分布式文件系统HDFS.MapReduce处理过程,以及数据仓库工具Hive和分布式数据库Hbase的介绍,基本涵盖了Hadoop分布式平台的所有技术核心. 通过这一阶段的调研总结,从内部机理的角度详细分析,HDFS.MapReduce.Hbase.Hive是如何运行,以及基于Hadoop数据仓库的构建和分布式数据库内部具体实现.如有不足,后续及时修改. HDFS的体系架构 整个Hadoop的体系结构主要是通过HDFS来实现对分布式存储的底层支持,并通过M

《Hive编程指南》一1.2 Hadoop生态系统中的Hive

1.2 Hadoop生态系统中的Hive WordCount算法,和基于Hadoop实现的大多数算法一样,有那么点复杂.当用户真正使用Hadoop的API来实现这种算法时,甚至有更多的底层细节需要用户自己来控制.这是一个只适用于有经验的Java开发人员的工作,因此也就将Hadoop潜在地放在了一个非程序员用户无法触及的位置,即使这些用户了解他们想使用的算法. 事实上,许多这些底层细节实际上进行的是从一个任务(job)到下一个任务(job)的重复性工作,例如,将Mapper和Reducer一同写入

hadoop学习笔记--10.hive安装与配置

一.hive安装 1.环境要求 1. Java 1.7或以上 2. Hadoop 2.x (preferred), 1.x (not supported by Hive 2.0.0 onward). 2.安装配置 Hive没有才有hadoop.HBase或者是Zookeeper的主从架构,所以只用在所需要的机器上安装即可. 1. 解压 tar -zxvf apache-hive-0.13.1-bin.tar.gz 把解压的文件夹移到自己需要的存放的目录. 2. 配置环境 sudo vi /etc

从Hadoop框架与MapReduce模式中谈海量数据处理(含淘宝技术架构)

 文章转载自: http://blog.csdn.net/v_july_v/article/details/670407 从hadoop框架与MapReduce模式中谈海量数据处理 前言     几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,觉得它们很是神秘,而神秘的东西常能勾起我的兴趣,在看过介绍它们的文章或论文之后,觉得Hadoop是一项富有趣味和挑战性的技术,且它还牵扯到了一个我更加感兴趣的话题:海量数据处理.     由此,最近凡是空闲时

Hadoop集群中利用HBase更加高效地进行查询和优化海量数据

本文将帮助读者在大数据云计算 Hadoop 集群应用中利用 HBase 更加高效.直观.便捷地进行存储,查询和优化海量数据. 2006 年 11 月,Google 发表了一篇名为< BigTable >论文 , 2007 年 2 月,Hadoop 的开发人员对其进行实现并命名为 HBase. HBase 是基于 Hadoop 之上的一种新型的基于列存储的开源数据存储架构,用于解决大数据问题,是 Hadoop 的分布式数据库. HBase 现在已经比较成熟,最新的稳定版本是 0.94.x.HBa

跟我一起hadoop(3)——hive

hive架构图: 用户接口,包括 CLI,Client,WUI. 元数据存储,通常是存储在关系数据库如 mysql, derby 中. 解释器.编译器.优化器.执行器. Hadoop:用 HDFS 进行存储,利用 MapReduce 进行计算. 用户接口主要有三个:CLI,Client 和 WUI.其中最常用的是 CLI,Cli 启动的时候,会同时启动一个 Hive 副本.Client 是 Hive 的客户端,用户连接至 Hive Server.在启动 Client 模式的时候,需要指出 Hiv

Hive简介、什么是Hive、为什么使用Hive、Hive的特点、Hive架构图、Hive基本组成、Hive与Hadoop的关系、Hive与传统数据库对比、Hive数据存储(来自学习资料)

1.1 Hive简介 1.1.1   什么是Hive Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能. 1.1.2   为什么使用Hive Ø  直接使用hadoop所面临的问题 人员学习成本太高 项目周期要求太短 MapReduce实现复杂查询逻辑开发难度太大   Ø  为什么要使用Hive 操作接口采用类SQL语法,提供快速开发的能力. 避免了去写MapReduce,减少开发人员的学习成本. 功能扩展很方便. 1.1.3   H

如何利用mapreduce访问hbase数据

package com.mr.test; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.KeyValue; imp