UNIX环境高级编程:线程私有数据

线程私有数据(Thread-specific data,TSD):存储和查询与某个线程相关数据的一种机制。
 

在进程内的所有线程都共享相同的地址空间,即意味着任何声明为静态或外部变量,或在进程堆声明的变量,都可以被进程内所有的线程读写。

一个线程真正拥有的唯一私有存储是处理器寄存器,栈在“主人”故意暴露给其他线程时也是共享的。

有时需要提供线程私有数据:可以跨多个函数访问(全局);仅在某个线程有效(私有)(即在线程里面是全局)。例如:errno。

进程中的所有线程都可以访问进程的整个地址空间,除非使用寄存器(一个线程真正拥有的唯一私有存储是处理器寄存器),线程没有办法阻止其它线程访问它的数据,线程私有数据也不例外,但是管理线程私有数据的函数可以提高线程间的数据独立性。

进程内的所有线程共享进程的数据空间,因此全局变量为所有线程所共有。但有时线程也需要保存自己的私有数据,这时可以创建线程私有数据(Thread-specific Date)TSD来解决。在线程内部,私有数据可以被各个函数访问,但对其他线程是屏蔽的。例如我们常见的变量errno,它返回标准的出错信息。它显然不能是一个局部变量,几乎每个函数都应该可以调用它;但它又不能是一个全局变量。(即在线程里面是全局变量)

创建线程私有数据就是为了线程内部各个函数可以很容易的传递数据信息,因此要使线程外的函数不能访问这些数据,而线程内的函数使用这些数据就像线程内的全局变量一样,这些数据在一个线程内部是全局的,一般用线程私有数据的地址作为线程内各个函数访问该数据的入口。

线程私有数据采用了一种被称为一键多值的技术,即一个键对应多个数值。访问数据时都是通过键值来访问,好像是对一个变量进行访问,其实是在访问不同的数据。使用线程私有数据时,首先要为每个线程私有数据创建一个相关联的键。在各个线程内部,都使用这个公用的键来指代线程数据,但是在不同的线程中,这个键代表的数据是不同的。操作线程私有数据的函数主要有4个:pthread_key_create(创建一个键),pthread_setspecific(为一个键设置线程私有数据),pthread_getspecific(从一个键读取线程私有数据),pthread_key_delete(删除一个键)。

创建一个键:

[cpp] view plaincopyprint

01.int pthread_key_create(pthread_key_t *keyp, void (*destructor)(void *));//返回值:若成功则返回0,否则返回错误编号

int pthread_key_create(pthread_key_t *keyp, void (*destructor)(void *));//返回值:若成功则返回0,否则返回错误编号 在分配(malloc)线程私有数据之前,需要创建和线程私有数据相关联的键(key),这个键的功能是获得对线程私有数据的访问权。

如果创建一个线程私有数据键,必须保证pthread_key_create对于每个Pthread_key_t变量仅仅被调用一次,因为如果一个键被创建两次,其实是在创建两个不同的键,第二个键将覆盖第一个键,第一个键以及任何线程可能为其关联的线程私有数据值将丢失。

创建新键时,每个线程的私有数据地址设为NULL。

注意:创建的键存放在keyp指向的内存单元,这个键可以被进程中的所有线程使用,但每个线程把这个键与不同的线程私有数据地址进行关联。

除了创建键以外,pthread_key_create可以选择为该键关联析构函数,当线程退出时,如果线程私有数据地址被置为非NULL值,那么析构函数就会被调用。

注意:析构函数参数为退出线程的私有数据的地址。如果私有数据的地址为NULL,就说明没有析构函数与键关联即不需要调用该析构函数。

当线程调用pthread_exit或者线程执行返回,正常退出时,析构函数就会被调用,但是如果线程调用了exit、_exit、Exit函数或者abort或者其它非正常退出时,就不会调用析构函数。

线程通常使用malloc为线程私有数据分配空间,析构函数通常释放已分配的线程私有数据的内存。

线程可以为线程私有数据分配多个键,每个键都可以有一个析构函数与它关联。各个键的析构函数可以互不相同,当然它们也可以使用相同的析构函数。

线程退出时,线程私有数据的析构函数将按照操作系统实现定义的顺序被调用。析构函数可能调用另外一个函数,而该函数可能创建新的线程私有数据而且把这个线程私有数据和当前的键关联起来。当所有的析构函数都调用完成以后,系统会检查是否有非NULL的线程私有数据值与键关联,如果有的话,再次调用析构函数,这个过程一直重复到线程所有的键都为NULL值线程私有数据,或者已经做了PTHREAD_DESTRUCTOR_ITERATIONS中定义的最大次数的尝试。

取消键与线程私有数据之间的关联:

[cpp] view plaincopyprint

01.int pthread_delete(pthread_key_t *keyp);//返回值:若成功则返回0,否则返回错误编号

int pthread_delete(pthread_key_t *keyp);//返回值:若成功则返回0,否则返回错误编号 注意调用pthread_delete不会激活与键关联的析构函数。删除线程私有数据键的时候,不会影响任何线程对该键设置的线程私有数据值,甚至不影响调用线程当前键值,所以容易造成内存泄露(因为键不与私有数据关联了,当线程正常退出的时候不会调用键的析构函数,最终导致线程的私有数据这块内存没有释放)。使用已经删除的私有数据键将导致未定义的行为。

注意:对于每个pthread_key_t变量(即键)必须仅调用一次pthread_key_create。如果一个键创建两次,其实是在创建不同的键,第二个键将覆盖第一个,第一个键与任何线程可能为其设置的值将一起永远的丢失。所以,pthread_key_create放在主函数中执行;或每个线程使用pthread_once来创建键。

时间: 2024-12-04 16:21:44

UNIX环境高级编程:线程私有数据的相关文章

UNIX环境高级编程---标准I/O库

前言:我想大家学习C语言接触过的第一个函数应该是printf,但是我们真正理解它了吗?最近看Linux以及网络编程这块,我觉得I/O这块很难理解.以前从来没认识到Unix I/O和C标准库I/O函数压根不是一码事.Unix I/O也叫低级I/O,也叫Unbuffered I/O,是操作系统内核部分,也是系统调用:而C标准I/O函数相对也成Buffered I/O,高级I/O,一般是为了效率考虑对这些系统调用的封装.以前使用getchar()经常为输入完后的回车而出错.那是不理解标准I/O实现时的

UNIX环境高级编程中的apue.h

/************** * *apueerror.h * *************/ #include <apue.h> #include <stdio.h> #include <errno.h> /* for definition of errno */ #include <stdarg.h> /* ISO C variable aruments */ static void err_doit(int, int, const char *, va

unix高级编程-UNIX环境高级编程 times() 疑问

问题描述 UNIX环境高级编程 times() 疑问 例程 int main(int argc, char *argv[]) { clock_t s_clk,e_clk; struct tms s_tms,e_tms; s_clk = times(&s_tms); system("ls /dev"); system("date"); sleep(1); e_clk = times(&e_tms); printf("e_clk %ld - s

ubuntu-最近在学习Unix 环境高级编程,配置环境时遇到了些问题

问题描述 最近在学习Unix 环境高级编程,配置环境时遇到了些问题 最近再看APUE(UNix 环境高级编程)的第三版,照着教程在中配置环境.也就是想要运行书中的源码,则要安装 libbsd-dev包,而每次安装这个包时,都如上报错,请问各位大虾,该怎么解决呢? 解决方案 你好, 类似的问题我也遇到过 ubuntu下apt-get install安装软件, 报"无法修正错误,因为您要求某些软件包保持现状,就是它们破坏了软件包间的依赖关系",今天终于找到解决方法了. 一般出现这种情况的原

unix环境高级编程-UNIX环境高级编程源代码对应

问题描述 UNIX环境高级编程源代码对应 今天开始学习UNIX环境高级编程,书中的源代码下载到了,但是发现根本不是按章节来的,找起来是相当的费时间,有哪位大神用过后知道他们的对应关系么,比如1-1对应ls1.c这样,真是万分感激,造福大家啊!

Mac OS X 10.8 中编译APUE(Unix环境高级编程)的源代码过程_C 语言

最近在温习APUE(<unix环境高级编程>),以前都是在linux下搞,现在打算在自己机器弄下,于是google了下,把编译的事情搞定了,修改了一些教程的一些错误,比如下载链接之类的. 1.下载源文件,我这里是第二版,貌似第三版的英文版出来了... 复制代码 代码如下: wget http://www.apuebook.com/src.2e.tar.gz 2.解压 复制代码 代码如下: tar zxf src.2e.tar.gz 3.修改些东西 复制代码 代码如下: cd apue.2e/

UNIX环境高级编程:线程和fork

当线程调用fork时,就为子进程创建了整个进程地址空间的副本.子进程通过继承整个地址空间的副本,也从父进程那里继承了所有互斥量.读写锁和条件变量的状态.如果父进程包含多个线程,子进程在fork返回以后,如果紧接着不是马上调用exec的话,就需要清理锁的状态. 在子进程内部只存在一个线程,它是由父进程中调用fork的线程的副本构成的.如果父进程中的线程占有锁,子进程同样占有这些锁.问题是子进程并不包含占有锁的线程的副本,所以子进程没有办法知道它占有了哪些锁,并且需要释放哪些锁. 当多线程进程调用f

UNIX环境高级编程:线程

线程包含了表示进程内执行环境必需的信息,其中包括进程中标示线程的线程ID.一组寄存器值.栈.调度优先级和策略.信号屏蔽字.errno变量以及线程私有数据. 进程的所有信息对该进程的所有线程都是共享的,包括可执行的程序文本.程序的全局内存和堆内存.栈以及文件描述符. 线程标识: 进程ID在整个系统中是唯一的,但线程ID不同,线程ID只在它所属的进程环境中有效.进程ID的数据结构为pid_t,线程ID的数据结构为pthread_t. 比较两个线程ID是否相等: #include <pthread.h

UNIX环境高级编程:线程同步之互斥锁、读写锁和条件变量

一.使用互斥锁 1.初始化互斥量 pthread_mutex_t mutex =PTHREAD_MUTEX_INITIALIZER;//静态初始化互斥量 int pthread_mutex_init(pthread_mutex_t*mutex,pthread_mutexattr_t*attr);//动态初始化互斥量 int pthread_mutex_destory(pthread_mutex_t*mutex);//撤销互斥量 不能拷贝互斥量变量,但可以拷贝指向互斥量的指针,这样就可以使多个函数