什么是冷热页?
在Linux Kernel的物理内存管理的Buddy System中,引入了冷热页的概念。冷页表示该空闲页已经不再高速缓存中了(一般是指L2 Cache),热页表示该空闲页仍然在高速缓存中。冷热页是针对于每CPU的,每个zone中,都会针对于所有的CPU初始化一个冷热页的per-cpu-pageset.
为什么要有冷热页?
作用有3点:
Buddy Allocator在分配order为0的空闲页的时候,如果分配一个热页,那么由于该页已经存在于L2 Cache中了。CPU写访问的时候,不需要先把内存中的内容读到Cache中,然后再写。如果分配一个冷页,说明该页不在L2 Cache中。一般情况下,尽可能用热页,是容易理解的。什么时候用冷页呢?While allocating a physical page frame, there is a bit specifying whether we would like a hot or a cold page (that is, a page likely to be in the CPU cache, or a page not likely to be there). If the page will be used by the CPU, a hot page will be faster. If the page will be used for device DMA the CPU cache would be invalidated anyway, and a cold page does not waste precious cache contents.
简单翻译一下:当内核分配一个物理页框时,有一些规范来约束我们是分配热页还是冷页。当页框是CPU使用的,则分配热页。当页框是DMA设备使用的,则分配冷页。因为DMA设备不会用到CPU高速缓存,所以没必要使用热页。
Buddy System在给某个进程分配某个zone中空闲页的时候,首先需要用自旋锁锁住该zone,然后分配页。这样,如果多个CPU上的进程同时进行分配页,便会竞争。引入了per-cpu-set后,当多个CPU上的进程同时分配页的时候,竞争便不会发生,提高了效率。另外当释放单个页面时,空闲页面首先放回到per-cpu-pageset中,以减少zone中自旋锁的使用。当页面缓存中的页面数量超过阀值时,再将页面放回到伙伴系统中。
使用每CPU冷热页还有一个好处是,能保证某个页一直黏在1个CPU上,这有助于提高Cache的命中率。
冷热页的数据结构
struct per_cpu_pages { int count; // number of pages in the list int high; // high watermark, emptying needed int batch; // chunk size for buddy add/remove // Lists of pages, one per migrate type stored on the pcp-lists 每个CPU在每个zone上都有MIGRATE_PCPTYPES个冷热页链表(根据迁移类型划分) struct list_head lists[MIGRATE_PCPTYPES]; };
在Linux中,对于UMA的架构,冷热页是在一条链表上进行管理。热页在前,冷页在后。CPU每释放一个order为0的页,如果per-cpu-pageset中的页数少于其指定的阈值,便会将释放的页插入到冷热页链表的开始处。这样,之前插入的热页便会随着其后热页源源不断的插入向后移动,其页由热变冷的几率便大大增加。
怎样分配冷热页
在分配order为0页的时候(冷热页机制只处理单页分配的情况),先找到合适的zone,然后根据需要的migratetype类型定位冷热页链表(每个zone,对于每个cpu,有3条冷热页链表,对应于:MIGRATE_UNMOVABLE、MIGRATE_RECLAIMABLE、MIGRATE_MOVABLE)。若需要热页,则从链表头取下一页(此页最“热”);若需要冷页,则从链表尾取下一页(此页最“冷”)。
分配函数(关键部分已添加注释):
/* * Really, prep_compound_page() should be called from __rmqueue_bulk(). But * we cheat by calling it from here, in the order > 0 path. Saves a branch * or two. */ static inline struct page *buffered_rmqueue(struct zone *preferred_zone, struct zone *zone, int order, gfp_t gfp_flags, int migratetype) { unsigned long flags; struct page *page; //分配标志是__GFP_COLD才分配冷页 int cold = !!(gfp_flags & __GFP_COLD); again: if (likely(order == 0)) { struct per_cpu_pages *pcp; struct list_head *list; local_irq_save(flags); pcp = &this_cpu_ptr(zone->pageset)->pcp; list = &pcp->lists[migratetype]; if (list_empty(list)) { //如果缺少页,则从Buddy System中分配。 pcp->count += rmqueue_bulk(zone, 0, pcp->batch, list, migratetype, cold); if (unlikely(list_empty(list))) goto failed; } if (cold) //分配冷页时,从链表尾部分配,list为链表头,list->prev表示链表尾 page = list_entry(list->prev, struct page, lru); else //分配热页时,从链表头分配 page = list_entry(list->next, struct page, lru); //分配完一个页框后从冷热页链表中删去该页 list_del(&page->lru); pcp->count--; } else {//如果order!=0(页框数>1),则不从冷热页链表中分配 if (unlikely(gfp_flags & __GFP_NOFAIL)) { /* * __GFP_NOFAIL is not to be used in new code. * * All __GFP_NOFAIL callers should be fixed so that they * properly detect and handle allocation failures. * * We most definitely don't want callers attempting to * allocate greater than order-1 page units with * __GFP_NOFAIL. */ WARN_ON_ONCE(order > 1); } spin_lock_irqsave(&zone->lock, flags); page = __rmqueue(zone, order, migratetype); spin_unlock(&zone->lock); if (!page) goto failed; __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); } __count_zone_vm_events(PGALLOC, zone, 1 << order); zone_statistics(preferred_zone, zone, gfp_flags); local_irq_restore(flags); VM_BUG_ON(bad_range(zone, page)); if (prep_new_page(page, order, gfp_flags)) goto again; return page; failed: local_irq_restore(flags); return NULL; }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索Linux冷热页机制
Linux冷热页
简述lac的调节机制、简述病毒的致病机制、简述java垃圾回收机制、简述java异常处理机制、简述肝素的抗凝机制,以便于您获取更多的相关知识。