Problem B. Rational Number Tree
Problem
Consider an infinite complete binary tree where the root node is 1/1 and left and right childs of node p/q are p/(p+q) and (p+q)/q, respectively. This tree looks like:
1/1
______|______
| |
1/2 2/1
___|___ ___|___
| | | |
1/3 3/2 2/3 3/1
...
It is known that every positive rational number appears exactly once in this tree. A level-order traversal of the tree results in the following array: 1/1, 1/2, 2/1, 1/3, 3/2, 2/3, 3/1, ... Please solve the following two questions:
Find the n-th element of the array, where n starts from 1. For example, for the input 2, the correct output is 1/2. Given p/q, find its position in the array. As an example, the input 1/2 results in the output 2.
Input
The first line of the input gives the number of test cases, T. T test cases follow. Each test case consists of one line. The line contains a problem id (1 or 2) and one or two additional integers:
If the problem id is 1, then only one integer n is given, and you are expected to find the n-th element of the array. If the problem id is 2, then two integers p and q are given, and you are expected to find the position of p/q in the array.
Output
For each test case:
If the problem id is 1, then output one line containing "Case #x: p q", where x is the case number (starting from 1), and p, q are numerator and denominator of the asked array element, respectively. If the problem id is 2, then output one line containing "Case #x: n", where x is the case number (starting from 1), and n is the position of the given number.
Limits
1 ≤ T ≤ 100; p and q are relatively prime.
Small dataset
1 ≤ n, p, q ≤ 216-1; p/q is an element in a tree with level number ≤ 16.
Large dataset
1 ≤ n, p, q ≤ 264-1; p/q is an element in a tree with level number ≤ 64.
Sample
Input
4
1 2
2 1 2
1 5
2 3 2
Output
Case #1: 1 2
Case #2: 2
Case #3: 3 2
Case #4: 5
解题思路:这题太遗憾了。匆忙之中提交大数据,结果发现数据超出long范围,尽快用BigInteger改写,刚好超过了提交时间。也是一道水题,找出推导的方法,递归求解就可以了。
BigInteger findPQ(BigInteger p, BigInteger q) {
if (p.equals(new BigInteger("1")) && q.equals(new BigInteger("1")))
return new BigInteger("1");
if (p.compareTo(q) < 0)
return findPQ(p, q.subtract(p)).multiply(new BigInteger("2"));
else
return findPQ(p.subtract(q), q).multiply(new BigInteger("2")).add(new BigInteger("1"));
}
BigInteger[] findN(BigInteger n) {
BigInteger[] ret = new BigInteger[2];
if (n.intValue() == 1) {
ret[0] = new BigInteger("1");
ret[1] = new BigInteger("1");
return ret;
}
BigInteger p = n.divide(new BigInteger("2"));
BigInteger[] pr = findN(p);
if (n.equals(p.multiply(new BigInteger("2")))) {
// left
ret[0] = pr[0];
ret[1] = pr[0].add(pr[1]);
return ret;
} else {
// right
ret[0] = pr[0].add(pr[1]);
ret[1] = pr[1];
return ret;
}
}
void run() {
int tests = sc.nextInt();
for (int test = 1; test <= tests; test++) {
int id = sc.nextInt();
System.out.print(String.format("Case #%d:", test));
if (id == 1) {
BigInteger n = new BigInteger(sc.next());
for (BigInteger i : findN(n)) {
System.out.print(" " + i);
}
System.out.println();
} else {
BigInteger p = new BigInteger(sc.next());
BigInteger q = new BigInteger(sc.next());
BigInteger res = findPQ(p, q);
System.out.println(" " + res);
}
}
}