Convert Sorted Array to Binary Search Tree

Given an array where elements are sorted in ascending order, convert it to a height balanced BST.

首先我是要AVL树的创建过程进行操作,不过提交之后出现超时,但还是让我将AVL树的创建过程实现了一遍,记录一下:

C++实现代码:

#include<iostream>
#include<new>
#include<vector>
#include<cmath>
using namespace std;

//Definition for binary tree
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

class Solution
{
public:
    TreeNode *sortedArrayToBST(vector<int> &num)
    {
        if(num.empty())
            return NULL;
        TreeNode *root=NULL;
        int i;
        for(i=0; i<(int)num.size(); i++)
            insert(root,num[i]);
        return root;
    }
    void insert(TreeNode *&root,int key)
    {int lhigh,rhigh;
        if(root==NULL)
        {
            root=new TreeNode(key);
            if(root==NULL)
                return;
        }
        else if(key<root->val)
        {
            insert(root->left,key);
            lhigh=maxDepth(root->left);
            rhigh=maxDepth(root->right);
            if(abs(lhigh-rhigh)>1)
            {
                if(key<root->left->val)
                    SingleRotateWithLeft(root);
                else
                    DoubleRotateWithLeft(root);
            }
        }
        else
        {
            insert(root->right,key);
            lhigh=maxDepth(root->left);
            rhigh=maxDepth(root->right);
            if(abs(lhigh-rhigh)>1)
            {
                if(key>root->right->val)
                    SingleRotateWithRight(root);
                else
                    DoubleRotateWithLeft(root);
            }
        }
    }
    int maxDepth(TreeNode *root)
    {
        if(root)
        {
            if(root->left==NULL&&root->right==NULL)
                return 1;
            int leftDepth=maxDepth(root->left);
            int rightDepth=maxDepth(root->right);
            return leftDepth>= rightDepth ?(leftDepth+1):(rightDepth+1);
        }
        return 0;
    }
    void SingleRotateWithLeft(TreeNode *&root)
    {
        TreeNode *l=root->left;
        root->left=l->right;
        l->right=root;
        root=l;
    }
    void SingleRotateWithRight(TreeNode *&root)
    {
        TreeNode *r=root->right;
        root->right=r->left;
        r->left=root;
        root=r;
    }
    void DoubleRotateWithLeft(TreeNode *&root)
    {
        SingleRotateWithRight(root->left);
        SingleRotateWithLeft(root);
    }
    void DoubleRotateWithRight(TreeNode *&root)
    {
        SingleRotateWithLeft(root->right);
        SingleRotateWithRight(root);
    }
    void inorder(TreeNode *root)
    {
        if(root)
        {
            inorder(root->left);
            cout<<root->val<<" ";
            inorder(root->right);
        }
    }
};

int main()
{
    Solution s;
    TreeNode *root=NULL;
    vector<int> vec={1,2,3,4,5,6,7,8,9,10};
    root=s.sortedArrayToBST(vec);
    s.inorder(root);
    cout<<endl;
    cout<<s.maxDepth(root)<<endl;
}

运行结果:

 

提交的代码:

#include<iostream>
#include<new>
#include<vector>
#include<cmath>
using namespace std;

//Definition for binary tree
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

class Solution
{
public:
    TreeNode *sortedArrayToBST(vector<int> &num)
    {
        if(num.empty())
            return NULL;//递归的退出条件,一定要写哦
        TreeNode *root=NULL;
        int left=0;
        int right=num.size()-1;
        int mid=(left+right)/2;
        root=new TreeNode(num[mid]);
        vector<int> l(mid);
        vector<int> r(right-mid);
        int i;
        for(i=0;i<mid;i++)
            l[i]=num[i];
        for(i=mid+1;i<(int)num.size();i++)
            r[i-mid-1]=num[i];
        root->left=sortedArrayToBST(l);
        root->right=sortedArrayToBST(r);
        return root;
    }
    int maxDepth(TreeNode *root)
    {
        if(root)
        {
            if(root->left==NULL&&root->right==NULL)
                return 1;
            int leftDepth=maxDepth(root->left);
            int rightDepth=maxDepth(root->right);
            return leftDepth>= rightDepth ?(leftDepth+1):(rightDepth+1);
        }
        return 0;
    }
    TreeNode* SingleRotateWithLeft(TreeNode *&root)
    {
        TreeNode *l=root->left;
        root->left=l->right;
        l->right=root;
        return l;
    }
    TreeNode* SingleRotateWithRight(TreeNode *&root)
    {
        TreeNode *r=root->right;
        root->right=r->left;
        r->left=root;
        return r;
    }
    TreeNode* DoubleRotateWithLeft(TreeNode *&root)
    {
        SingleRotateWithRight(root->left);
        return SingleRotateWithLeft(root);
    }
    TreeNode* DoubleRotateWithRight(TreeNode *&root)
    {
        SingleRotateWithLeft(root->right);
        return SingleRotateWithRight(root);
    }
    void inorder(TreeNode *root)
    {
        if(root)
        {
            inorder(root->left);
            cout<<root->val<<" ";
            inorder(root->right);
        }
    }
};

int main()
{
    Solution s;
    TreeNode *root=NULL;
    vector<int> vec={1,2,3,4,5,6,7,8,9,10};
    root=s.sortedArrayToBST(vec);
    s.inorder(root);
    cout<<endl;
    cout<<s.maxDepth(root)<<endl;
}

 

时间: 2024-10-04 01:51:43

Convert Sorted Array to Binary Search Tree的相关文章

[LeetCode]108.Convert Sorted Array to Binary Search Tree

[题目] Given an array where elements are sorted in ascending order, convert it to a height balanced BST. [分析] 二分法,以中间元素i为根节点[start,i-1]递归构建左子树,[i+1,end]递归构建右子树 [代码] /********************************* * 日期:2014-12-28 * 作者:SJF0115 * 题目: 108.Convert Sorte

[LeetCode]109.Convert Sorted List to Binary Search Tree

[题目] Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST. [分析] 无 [代码] 在下面超时的代码上进行改进:把链表先转换为vector再进行操作. [LeetCode]108.Convert Sorted Array to Binary Search Tree /*******************************

Geeks 面试题之Optimal Binary Search Tree

Dynamic Programming | Set 24 (Optimal Binary Search Tree) Given a sorted array keys[0.. n-1] of search keys and an array freq[0.. n-1] of frequency counts, where freq[i] is the number of searches to keys[i]. Construct a binary search tree of all keys

二叉查找树(binary search tree)详解

二叉查找树(Binary Search Tree),也称二叉排序树(binary sorted tree),是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值 任意节点的左.右子树也分别为二叉查找树 没有键值相等的节点(no duplicate nodes) 本文地址:http://www.cnblogs.com/archimedes/p/binary-search-tree

算法:uva-10304 Optimal Binary Search Tree(区间dp)

题意 给一个序列即可 S = (e1,e2,...,en),且e1<e2<..<en.要把这些序列构成一个二叉搜索 树. 二叉搜索树是具有递归性质的,且若它的左子树不空,则左子树上所有结点的值均小于它的根结点的 值: 若它 的右子树不空,则右子树上所有结点的值均大于它的根结点的值. 因为在实际应用中,被访 问频率越高的元素,就应该越接近根节点,这样才能更加节省查找时间. 每个元素有一个访问频率f(ei) ,当元素位于深度为k的地方,那么花费cost(ei) = k. 所有节点的花费和访问

[LeetCode]235.Lowest Common Ancestor of a Binary Search Tree

题目 Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST. According to the definition of LCA on Wikipedia: "The lowest common ancestor is defined between two nodes v and w as the lowest node in T that h

[LeetCode]173.Binary Search Tree Iterator

[题目] Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST. Calling next() will return the next smallest number in the BST. Note: next() and hasNext() should run in average O(1) time and

[LeetCode]99.Recover Binary Search Tree

[题目] Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing its structure. Note:A solution using O(n) space is pretty straight forward. Could you devise a constant space solution? [解析] O(n) 空间的解法是,开一个指针数组

Recover Binary Search Tree

Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing its structure. Note:A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?   confused what "{1,#,2,3}&qu