优先队列之二叉堆与d-堆

二叉堆简介

 

平时所说的堆,若没加任何修饰,一般就是指二叉堆。同二叉树一样,堆也有两个性质,即结构性和堆序性。正如AVL树一样,对堆的以此操作可能破坏者两个性质中的一个,因此,堆的操作必须要到堆的所有性质都被满足时才能终止。

结构性质

 

堆是一棵完全填满的二叉树,因为完全二叉树很有规律,所以它可以用一个数组表示而不需要指针。如下图所示,图2中的数组对应图1中的堆。

                            

图1:二叉堆                                                                                   图2:二叉堆的数组存储

对于任意位置i上的元素,其左儿子在位置2i处,右儿子在位置2i+1处,而它的父亲在i/2。因此,不仅指针这里不需要,而且遍历该树所需要的操作也十分简单。这种表示法的唯一问题在于:最大的堆大小需要事先估计,但对于典型的情况者并不成问题,图2中堆的大小是13个元素。该数组有一个位置0,用做哨兵,后面会有阐述。

因此,一个堆的数据结构将由一个数组,一个代表最大值的整数以及当前堆的大小组成。

堆序性质

 

使操作能快速执行的性质是堆序性。在一个堆中,对于每个节点X,X的父亲中的关键字小于(或等于)X中的关键字,根节点除外(根节点没有父亲)。图3中,左边的是堆,右边的不是(虚线表示堆序性质被破坏)。

        图3:两棵完全二叉树

基本操作

 

Insert(插入):

为了将一个元素X插入到堆中,我们在下一个空闲位置创建一个空穴,否则该堆将不是完全树。如果X可以放入到该空穴中,那么插入完成。否则,我们把空穴的父节点上的元素移入该空穴中,这样,空穴就朝着根的方向上行一步。继续该过程直到X能被放入到空穴中为止。图4表示,为了插入14,我们在堆的下一个可用位置建立一个空穴,由于将14插入空穴破坏了堆序性质,因此将31移入该空穴,图5继续这种策略,直到找到14的正确位置。

               

 图4:创建一个空穴,再将空穴上冒                                       图5:将14插入到前面的堆中的其余两步

这种策略叫做上虑。新元素在堆中上虑直到找出正确的位置;使用如下代码,很容易实现。

如果要插入的元素师新的最小值,那么它将一直被推向顶端,这样在某一时刻,i将是1,我们就需要令程序跳出while循环。当然可以通过明确的测试做到这一点。不过,这里采用的是把一个很小的值放到位置0处以使while循环终止,这个值必须小于堆中的任何值,称之为标记或哨兵。这类似于链表中头结点的使用。通过添加的这个标记,避免了每次循环都要执行一次测试,这是简单的空间换时间策略。

 

DeleteMin(删除最小元):

 

找出最小元是很容易的;困难的部分是删除它。当删除一个最小元时,在根节点处产生了一个空穴。由于现在堆少了一个元素,因此对中最后一个元素X必须移到该堆的某个地方。如果X可以被放入空穴中,那么DeleteMin完成。不过这一般都不可能,因此我们将空穴的两个儿子中较小者移入空穴中,这样就把空穴向下推了一层,重复该步骤,知道X可以被放入空穴中。因此,我们的做法是将X置入沿着从根开始包含最小儿子的一条路径上的一个正确的位置。

图6显示DeleteMin之前的堆,删除13之后,我们必须要正确的将31放到堆中,31不能放在空穴中,因为这将破坏堆序性质,于是,我们把较小的儿子14置入空穴,同时空穴向下滑一层,重复该过程,把19置入空穴,在更下一层上建立一个新的空穴,然后26置入空穴,在底层又建立一个新的空穴,最后,我们得以将31置入空穴中。这种策略叫做下虑。

                    

图6 在根处建立空穴                                                             图7:将空穴下滑一层 

 

 图8:空穴移到底层,插入31

BinHeap.h

typedef int ElementType;
#ifndef _BinHeap_H
#define MinPQSize 10
#define MinData -32767
struct HeapStruct;
typedef struct HeapStruct *PriorityQueue;

PriorityQueue Initialize(int MaxElements);
void Destroy(PriorityQueue H);
void MakeEmpty(PriorityQueue H);
void Insert(ElementType X,PriorityQueue H);
ElementType DleteMin(PriorityQueue H);
ElementType FindMin(PriorityQueue H);
int IsEmpty(PriorityQueue H);
int IsFull(PriorityQueue H);

#endif

BinHeap.c

#include"BinHeap.h"
#include"fatal.h"

struct HeapStruct
{
    int Capacity;
    int Size;
    ElementType *Elements;
};

PriorityQueue Initialize(int MaxElements)
{
    PriorityQueue H;
    if(MaxElements<MinPQSize)
    Error("Priority queue size is too small");
    H=malloc(sizeof(struct HeapStruct));
    H->Elements=malloc((MaxElements+1)*sizeof(ElementType));
    if(H->Elements==NULL)
    FatalError("Out of space!!!");
    H->Capacity=MaxElements;
    H->Size=0;
    H->Elements[0]=MinData;
    return H;
}

void MakeEmpty(PriorityQueue H)
{
    H->Size=0;
}

void Insert(ElementType X,PriorityQueue H)
{
    int i;
    if(IsFull(H))
    {
        Error("Priority queue is full");
    }
    for(i=++H->Size;X<H->Elements[i/2];i=i/2)
    {
        H->Elements[i]=H->Elements[i/2];
    }
    H->Elements[i]=X;
}

ElementType DeleteMin(PriorityQueue H)
{
    int i,Child;
    ElementType MinElement,LastElement;
    if(IsEmpty(H))
    {
        Error("Priority queue is empty");
        return H->Elements[0];
    }
    MinElement=H->Elements[1];
    LastElement=H->Elements[H->Size--];
    for(i=1;i<H->Size;i=Child)
    {
        Child=2*i;
        if(Child!=H->Size&&H->Elements[Child]>H->Elements[Child+1])
            Child++;
        if(LastElement>H->Elements[Child])
            H->Elements[i]=H->Elements[Child];
        else
            break;
    }
    H->Elements[i]=LastElement;
    return MinElement;
}

ElementType FindMin(PriorityQueue H)
{
    return H->Elements[1];
}

int IsEmpty(PriorityQueue H)
{
    return H->Size==0;
}

int IsFull(PriorityQueue H)
{
    return H->Capacity==H->Size;
}
void Destroy(PriorityQueue H)
{
    free(H->Elements);
    free(H);
}

UseBinHeap.c

#include <stdio.h>
#include <stdlib.h>
#include"BinHeap.h"
int main()
{
    int i;
    PriorityQueue H=Initialize(MinPQSize);
    MakeEmpty(H);
    for(i=0;i<MinPQSize;i++)
    {
         Insert(i,H);
    }
    printf("Hello world!\n");
    return 0;
}

 

d-堆

二叉堆因为实现简单,因此在需要优先队列的时候几乎总是使用二叉堆。d-堆是二叉堆的简单推广,它恰像一个二叉堆,只是所有的节点都有d个儿子(因此,二叉堆又叫2-堆)。下图表示的是一个3-堆。注意,d-堆要比二叉堆浅得多,它将Insert操作的运行时间改进为 。然而,对于大的d,DeleteMin操作费时得多,因为虽然树浅了,但是d个儿子中的最小者是必须找到的,如果使用标准算法,将使用d-1次比较,于是将此操作的时间提高到 。如果d是常数,那么当然两种操作的运行时间都为 O(logN)。虽然仍可以使用一个数组,但是,现在找出儿子和父亲的乘法和除法都有个因子d,除非d是2的幂,否则会大大增加运行时间,因为我们不能再通过二进制移位来实现除法和乘法了。D-堆在理论上很有趣,因为存在许多算法,其插入次数比删除次数多得多,而且,当优先队列太大不能完全装入内存的时候,d-堆也是很有用的,在这种情况下,d-堆能够以与B-树大致相同的方式发挥作用。

除了不能执行Find操作外(指以对数执行),堆的实现最明显的两个缺点是:将两个堆合并成一个堆是很困难的。这种附加的操作叫做Merge。存在许多实现堆的方法使得Merge操作的运行时间为O(logN),如下篇介绍的左式堆。

时间: 2024-10-15 02:25:03

优先队列之二叉堆与d-堆的相关文章

温故知新,基础复习(二叉堆排序)

温故知新,基础复习(二叉堆排序) 最小堆(最终数组的数据是降序),最大堆(最终数组的数据是升序) 下例是最小堆 #include <stdio.h> #include <stdlib.h> void Swap(int Arra[],unsigned int LeftIndex,unsigned int RightIndex) { int TeampValue = Arra[LeftIndex]; Arra[LeftIndex]=Arra[RightIndex]; Arra[Righ

结构之美——优先队列基本结构(四)——二叉堆、d堆、左式堆、斜堆

实现优先队列结构主要是通过堆完成,主要有:二叉堆.d堆.左式堆.斜堆.二项堆.斐波那契堆.pairing 堆等.   1. 二叉堆  1.1. 定义 完全二叉树,根最小. 存储时使用层序.   1.2. 操作 (1). insert(上滤) 插入末尾 26,不断向上比较,大于26则交换位置,小于则停止.   (2). deleteMin(下滤) 提取末尾元素,放在堆顶,不断下滤:   (3). 其他操作: 都是基于insert(上滤)与deleteMin(下滤)的操作. 减小元素:减小节点的值,

C#中基于数组的实现二叉堆

using System;using System.Collections;namespace DataStructure{ /// <summary> /// BinaryHeap 的摘要说明.-------二叉堆(基于数组的实现) /// </summary> public class BinaryHeap:IPriorityQueue { protected ArrayList array; //建立一个最多容纳_length个对象的空二叉堆 public BinaryHea

二叉堆(binary heap)

堆(heap) 亦被称为:优先队列(priority queue),是计算机科学中一类特殊的数据结构的统称.堆通常是一个可以被看做一棵树的数组对象.在队列中,调度程序反复提取队列中第一个作业并运行,因而实际情况中某些时间较短的任务将等待很长时间才能结束,或者某些不短小,但具有重要性的作业,同样应当具有优先权.堆即为解决此类问题设计的一种数据结构. 本文地址:http://www.cnblogs.com/archimedes/p/binary-heap.html,转载请注明源地址. 逻辑定义 n个

数据结构 之 二叉堆(Heap)

注:本节主要讨论最大堆(最小堆同理). 一.堆的概念     堆,又称二叉堆.同二叉查找树一样,堆也有两个性质,即结构性和堆序性.     1.结构性质:     堆是一棵被完全填满的二叉树,有可能的例外是在底层,底层上的元素从左到右填入.这样的树称为完全二叉树(complete binary tree).下图就是这样一个例子.         对于完全二叉树,有这样一些性质:     (1).一棵高h的完全二叉树,其包含2^h ~ (2^(h+1) - 1)个节点.也就是说,完全二叉树的高是[

二叉堆

容易证明: 一棵高为h的完全二叉树有2^h 到 2^(h+1)-1个结点. 这就意味着,完全二叉树的高是[logN] 特点: 任意位置i: 左儿子在位置2i上,右儿子在位置2i+1上,父亲在i/2上 一个堆数据结构将由一个Comparable数组和一个代表当前堆的大小的整数组成: 优先队列的接口: 1 template <typename Comparable> 2 class BinaryHeap 3 { 4 public: 5 explicit BinaryHeap ( int capac

数据结构-二叉堆(C描述)

1.主要的存储结构 struct HeapStruct { int Capacity;//最大容量 int Size;//当前容量 ElementType *Elements;//数组入口地址 }; typedef struct HeapStruct *PriorityQueue; 结构体HeapStruct实际上是一个数组,二叉堆的底层实现是一个完全二叉树,因此可以很方便的使用数组实现. 完全二叉树的一个重要性质是可以明确给出父子之间的位置关系: 设节点v的秩为i(设根节点秩为0),则 若v有

在A*寻路中使用二叉堆

A*算法中最缓慢的部分就是在开启列表中寻找F值最低的节点或者方格.取决于地图的大小,你可能有十几,成百甚至上千的节点需要在某个时候使用A*搜索.无需多讲,反复搜索这么大的列表会严重拖慢整个过程.然而,这些时间在极大程度上受你存储列表的方式影响. 有序和无序的开启列表:简单的方法 最简单的方法就是顺序存储每个节点,然后每次需要提取最低耗费元素的时候都遍历整个列表.这提供可快速的插入速度,但是移除速度可能是最慢的,因为你需要检查每个元素才能够确定哪个才是F值最低的. 通常你可以保持你列表处于有序状态

理解二叉堆数据结构及Swift的堆排序算法实现示例_Swift

二叉堆的性质1.二叉堆是一颗完全二叉树,最后一层的叶子从左到右排列,其它的每一层都是满的 2.最小堆父结点小于等于其每一个子结点的键值,最大堆则相反 3.每个结点的左子树或者右子树都是一个二叉堆 下面是一个最小堆: 堆的存储通常堆是通过一维数组来实现的.在起始数组为 0 的情形中: 1.父节点i的左子节点在位置 (2*i+1); 2.父节点i的右子节点在位置 (2*i+2); 3.子节点i的父节点在位置 floor((i-1)/2); 维持堆的性质我们以最大堆来介绍(后续会分别给出最大堆和最小堆