论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

 

Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

 

xx

 

时间: 2024-12-24 14:22:39

论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation的相关文章

论文笔记之:Progressive Neural Network Google DeepMind

  Progressive Neural Network  Google DeepMind   摘要:学习去解决任务的复杂序列 --- 结合 transfer (迁移),并且避免 catastrophic forgetting (灾难性遗忘) --- 对于达到 human-level intelligence 仍然是一个关键性的难题.本文提出的 progressive networks approach 朝这个方向迈了一大步:他们对 forgetting 免疫,并且可以结合 prior know

论文笔记: Dual Deep Network for Visual Tracking

论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. 文章将 边界和形状信息结合到深度网络中.底层 feature 和 高层 feature 结合起来,得到 coarse prior map,然后用 ICA-R model 得到更加显著的物体轮廓,以得到更好的似然性模型:  2. Dual network 分别处理两路不同的网络,使得前景和背景更加具

论文笔记之:Deep Attributes Driven Multi-Camera Person Re-identification

Deep Attributes Driven Multi-Camera Person Re-identification 2017-06-28  21:38:55      [Motivation] 本文的网络设计主要分为三个部分: Stage 1: Fully-supervised dCNN training Stage 2: Fine-tuning using attributes triplet loss Stage 3:Final fine-tuning on the combined

论文笔记之: Deep Metric Learning via Lifted Structured Feature Embedding

  Deep Metric Learning via Lifted Structured Feature Embedding CVPR 2016    摘要:本文提出一种距离度量的方法,充分的发挥 training batches 的优势,by lifting the vector of pairwise distances within the batch to the matrix of pairwise distances. 刚开始看这个摘要,有点懵逼,不怕,后面会知道这段英文是啥意思的.

论文笔记之:Deep Attention Recurrent Q-Network

Deep Attention Recurrent Q-Network 5vision groups     摘要:本文将 DQN 引入了 Attention 机制,使得学习更具有方向性和指导性.(前段时间做一个工作打算就这么干,谁想到,这么快就被这几个孩子给实现了,自愧不如啊( ⊙ o ⊙ ))   引言:我们知道 DQN 是将连续 4帧的视频信息输入到 CNN 当中,那么,这么做虽然取得了不错的效果,但是,仍然只是能记住这 4 帧的信息,之前的就会遗忘.所以就有研究者提出了 Deep Recu

论文笔记之:Deep Recurrent Q-Learning for Partially Observable MDPs

  Deep Recurrent Q-Learning for Partially Observable MDPs     摘要:DQN 的两个缺陷,分别是:limited memory 和 rely on being able to perceive the complete game screen at each decision point.  为了解决这两个问题,本文尝试用 LSTM 单元 替换到后面的 fc layer,这样就产生了 Deep Recurrent Q-Network (

论文笔记之:Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

  Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks NIPS 2015    摘要:本文提出一种 generative parametric model 能够产生高质量自然图像.我们的方法利用 Laplacian pyramid framework 的框架,从粗到细的方式,利用 CNN 的级联来产生图像.在金字塔的每一层,都用一个 GAN,我们的方法可以产生更高分辨率的图像.      

论文笔记之:Deep Reinforcement Learning with Double Q-learning

  Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract  主流的 Q-learning 算法过高的估计在特定条件下的动作值.实际上,之前是不知道是否这样的过高估计是 common的,是否对性能有害,以及是否能从主体上进行组织.本文就回答了上述的问题,特别的,本文指出最近的 DQN 算法,的确存在在玩 Atari 2600 时会 suffer from substantial overestimat

论文笔记之:A CNN Cascade for Landmark Guided Semantic Part Segmentation

    A CNN Cascade for Landmark Guided Semantic Part Segmentation  ECCV 2016   摘要:本文提出了一种 CNN cascade (CNN 级联)结构,根据一系列的定位(landmarks or keypoints),得到特定的 pose 信息,进行 语义 part 分割.前人有许多单独的工作,但是,貌似没有将这两个工作结合到一起,相互作用的 multi-task 的工作.本文就弥补这个缺口,提出一种 CNN cascade