强化学习全解 强化学习(Re-inforcement Learning) 是一种基于与环境互动的目标导向的学习.强化学习被认为是真正的人工智能的希望.作者认为这是正确的说法,因为强化学习拥有巨大的潜力. 据雷锋网(公众号:雷锋网)了解,很多人说,强化学习被认为是真正的人工智能的希望.本文从 7 个方面带你入门强化学习,读完本文,希望你对强化学习及实战中实现算法有着更透彻的了解. 详情:http://dataunion.org/27366.html Facebook 机器学习@Scale 2017
在数据分析和数据挖掘的过程中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别.最常见的是数据分析中的相关分析,数据挖掘中的分 类和聚类算法,如K最近邻(KNN)和K均值(K-Means).当然衡量个体差异的方法有很多,最近查阅了相关的资料,这里整理罗列下. 为了方便下面的解释和举例,先设定我们要比较X个体和Y个体间的差异,它们都包含了N个维的特征,即X=(x1, x2, x3, - xn),Y=(y1, y2, y3, - yn).下面来看看主要可以用哪些方法来衡量两者的差异,主要
问题描述 通过余弦相似度算法计算用户相似度时具体怎么做 按用户购买的物品,具体怎么样计算...................... 解决方案 http://blog.csdn.net/cscmaker/article/details/7990600
因为一些私人的事情,本来早已经应该完成的一篇文章一直到今天才可以草草了结.在前面的两篇文 章<图像相似度算法的C#实现及测评><对"画条线"(Draw a line)的单元测试几点想法和实践 >中 ,先后介绍了一个简单的会读直方图算法和一些关于GUI画图的测试想法.有必要说明的是,在<对"画 条线"(Draw a line)的单元测试几点想法和实践>中提到的几种方法,最实用的是Mock法并不是今天 的主题. 这篇文章中继续前面的思
这篇文章主要介绍了javascript实现图片相似度算法,大家参考使用吧 代码如下: function getHistogram(imageData) { var arr = []; for (var i = 0; i < 64; i++) { arr[i] = 0; } var data = imageData.data; var pow4 = Math.pow(4, 2); for (var i = 0, len = data
考虑到知识的复杂性,连续性,将本算法及应用分为3篇文章,请关注,将在本月逐步发表. 1.机器学习之PageRank算法应用与C#实现(1)算法介绍 2.机器学习之PageRank算法应用与C#实现(2)球队排名应用与C#代码 3.机器学习之PageRank算法应用与C#实现(3)球队实力排名应用与C#代码 Pagerank是Google排名运算法则(排名公式)的一部分,是Google用于用来标识网页的等级/重要性的一种方法,是Google用来衡量一个网站的好坏的唯一标准.在揉合了诸如Title
机器学习中的算法(1)-决策树模型组合之随机森林与GBDT. 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大大的减少单决策树带来的毛病,
Mahout中实现的推荐算法是协同过滤,而无论是UserCF还是ItemCF都依赖于user相似度或item相似度.本文是对mahout中的一些相似度算法的解读. Mahout相似度相关类关系如下: 有点乱(^.^) 从上图可看出,Mahout主要针对用户相似度和物品相似度的计算,并且除了HybridSimilarity之外全都能够用于计算user和item两者的相似度,只有HybridSimilarity只能计算item相似度.接来下分三部分进行分析:继承AbstractSimilar
在上一篇文章:机器学习之PageRank算法应用与C#实现(1)算法介绍 中,对PageRank算法的原理和过程进行了详细的介绍,并通过一个很简单的例子对过程进行了讲解.从上一篇文章可以很快的了解PageRank的基础知识.相比其他一些文献的介绍,上一篇文章的介绍非常简洁明了.说明:本文的主要内容都是来自"赵国,宋建成.Google搜索引擎的数学模型及其应用,西南民族大学学报自然科学版.2010,vol(36),3"这篇学术论文.鉴于文献中本身提供了一个非常简单容易理解和入门的案例,所