引言
从有线互联网到无线互联网,本质是加强了人与人之间随时随地的关联。下一个互联的时代是万物互联,也就是物联网。有人说,这个是第三次信息革命,不管咋样,这都会产生大量的数据。
举一个例子,杭州市有200w辆汽车(具体肯定比这个多),我们给每辆车安装一个传感器,每隔10s,上传1k的数据量,说明这个车的位置,一些情况。QPS为20w,1年的数据量为:36536024200w1k=5.73P ,如果不做任何的容灾,每个磁盘4T来算,则需要 5.73*1024/4T=1466块磁盘,做一些容灾,则至少需要2000+的磁盘。这些数据蕴含着巨大的价值,分析这些数据后,则会改变整个杭州的交通。
架构
在我们传统架构下,一般会使用关系型数据库,关系型数据库索引结构基本上都是类B+树,随着终端设备数增多,读写压力剧增,读写延迟增大,数据库面临崩溃;其次,关系型数据库也无法做到存储容量无限扩容,目前有一些分库分表的方案,实现起来比较复杂,往往有较多的限制。
物联网最大的特点写入量大,要求延迟低,且数据存量巨大。HBase基于LSM,把磁盘的随机写改为顺序写,写吞吐高,不受SSD随机写入放大干扰,也不受空间放大的干扰。目前HBase非常满足物联网存储需求,存储数T、数P甚至百P的空间,延迟稳定在数毫秒之内,跟Hadoop分析体系有较为深入的结合,满足分析类的需求。具体物理网的大致结构如下:
主要流程:
1、一部分实时,直接走MQ,到流式系统,做一些实时的分析,后写入HBase。
2、一部分写入HBase,一般是全量数据,后接入Hadoop/Spark,做一些离线分析,后续结果写入HBase中。
往往在使用HBase时,使用的rowkey设计是:设备ID+地点+xxx+时间xxx
每个云公司,都在前端的一些环节做了很多事情,比如提供硬件支持、协议支持、ECS可以使用一些弹性方案,当然也有不少公司是自己做方案。
针对数据从云HBase到EMR Hadoop/Spark中,目前有两种方案,其一是Hadoop、Spark直接连接云HBase分析;其二是云HBase提供一些导出数据的功能,在EMR中自动生成一张表(目前云HBase在实现中)。
云HBase地址:https://cn.aliyun.com/product/hbase
后记
本章节,简单介绍了使用云HBase支持物联网的方案,关于更多的云HBase的讨论,请关注: