预测分析:R语言实现2.8 小结

2.8 小结


在本章,我们学习了线性回归,这是一种让我们能在有监督学习环境下拟合线性模型的方法,在这种环境下,我们有一些输入特征和一个数值型的输出。简单线性回归是对只有一个输入特征的情况的命名,而多元线性回归则描述了具有多个输入特征的情况。线性回归是解决回归问题很常用的第一步骤。它假定输出是输入特征的线性加权组合,再加上一个无法化简、符合正态分布、具有0均值和常数方差的误差项。这种模型也假设特征是相互独立的。线性回归的性能可以通过一组不同的衡量指标来进行评价,从更标准的MSE到诸如R2 统计量等其他指标。我们探讨了几种模型诊断和显著性检验方法,它们用于检测从不成立的假设到离群值等问题。最后,我们还讨论了如何用逐步回归进行特征选择,以及利用岭回归和lasso进行正则化。

线性回归模型具有多种优势,包括快速和开销小的参数计算过程,以及易于解释和推断的模型,这是因为它具有形式简单的优点。有很多检验方法可以用来诊断关于模型拟合的问题,并对系数的显著性进行假设检验。总体来说,可以认为它是低方差的一种方法,因为它对于数据中的小误差比较健壮(robust)。就其不足之处而言,因为它作出了非常严格的假设,尤其是输出函数在模型参数里必须是线性的,所以它就会引入很高程度的偏误,对于比较复杂或高度非线性的一般函数,这种方法往往就表现不佳。此外,我们也看到了,当输入特征数量变得很多时,我们就不能依赖于系数的显著性检验。当我们在一个高维特征空间里工作时,这个事实再加上特征之间的独立性假设,就会使线性回归成为相对较差的一种选择。

在下一章,我们会学习逻辑回归,它是一种用于分类问题的重要方法。

 

时间: 2024-09-11 20:02:45

预测分析:R语言实现2.8 小结的相关文章

R 语言 用途 与优势

(1)R 语言主要用来 对 数据进行统计分析 (2)R语言可以针对数据 进行绘图 其高级功能如下 R语言饼图图表R语言条形图(柱状图)R语言箱线图R语言柱状图R语言线型图R语言散点图R语言均值,中位数和模式R语言线性回归R语言多元回归R语言逻辑回归R语言正态分布R语言二项分布R语言泊松回归R语言协方差分析R语言时间序列分析R语言非线性最小二乘R语言决策树R语言随机森林R语言生存分析R语言卡方检验 绘图 R编程语言在数字分析与机器学习领域已经成为一款重要的工具.随着机器逐步成为愈发核心的数据生成器

预测分析:R语言实现.

数据科学与工程技术丛书 预测分析:R语言实现 Mastering Predictive Analytics with R [希] 鲁伊·米格尔·福特(Rui Miguel Forte) 著 吴今朝 译 图书在版编目(CIP)数据 预测分析:R语言实现/(希)鲁伊·米格尔·福特(Rui Miguel Forte)著:吴今朝译. -北京:机械工业出版社,2016.10 (数据科学与工程技术丛书) 书名原文:Mastering Predictive Analytics with R ISBN 978-

预测分析:R语言实现导读

前 言 预测分析以及更一般意义上的数据科学当前正处于被追捧的热潮中,因为像垃圾邮件过滤.单词补全和推荐引擎这样的预测性技术已经被广泛运用于日常生活.这些技术现在不仅越来越被我们所熟悉,还赢得了我们的信任.在计算机处理能力和软件方面(例如R语言及其大量专用的扩展包)的发展产生了这样的局面:用户经过培训就可以使用这些工具,而无需具备统计学的高级学位,也不需要使用公司或大学实验室专用的硬件.技术的成熟度和基础软硬件的可用性结合起来,让很多该领域的从业者倍感兴奋,他们感到可以为自己的领域和业务设计一些能

预测分析:R语言实现1.1 模型

1.1 模型 模型是预测分析学的核心,因此,本书一开始会讨论各种模型及其形式.简而言之,模型是我们要理解和分析的状态.流程或系统的一种表现形式.我们创建模型的目的是根据它得出推论以及(在本书中对我们更为重要的一点)对世界进行预测.模型的格式和风格有很多种,我们在本书中会探讨这种多样性中的一部分.模型可以是和我们能够观察或测量的数量值相关的一些方程,也可以是一套规则.我们大部分人在学校都熟悉的一个简单模型是牛顿第二运动定律.该定律表明,一个物体受到的合力会使之在合力作用的方向加速,加速度和合力大小

预测分析:R语言实现1.4 性能衡量指标

1.4 性能衡量指标 在上一节讨论预测建模过程的时候,我们讨论了利用训练集和测试集对被训练模型的性能进行评估的重要性.在本节,我们要审视在描述不同模型的预测精确度时常遇见的某些性能衡量指标.其实,根据问题的不同类型,会需要使用略有差异的性能评估方式.由于本书讨论的重点是有监督的模型,所以我们会审视如何评估回归模型和分类模型.对于分类模型,我们还会讨论二元分类任务这样一个非常重要且经常遇到各类问题的模型所采用的某些额外的衡量指标. 1.4.1 评估回归模型 在一个回归的场景里,让我们回顾一下,通过

预测分析:R语言实现1.3 预测建模的过程

1.3 预测建模的过程 通过观察模型的某些不同特征,我们已经对预测建模过程的各种步骤有所了解.在本节,我们要顺序讲解这些步骤,并理解每个步骤是如何对该任务的整体成功起作用的. 1.3.1 定义模型的目标 简而言之,每个项目的第一步是准确找出期望的结果是什么,因为这样有助于引导我们在项目的进展过程中做出正确的决定.在一个预测分析学项目里,这个问题包括深入研究我们要进行的预测的类型,以及从细节上去理解任务.例如,假定我们要尝试创建一个模型来预测某公司的雇员流失.我们首先需要准确定义这个任务,同时尽量

预测分析:R语言实现2.3 多元线性回归

2.3 多元线性回归 只要有多于一个输入特征,并且要构建一个线性回归模型,我们就处于多元线性回归的领域了.具有k个输入特征的多元线性回归模型的一般方程如下所示: y=kxk+k-1xk-1+-+1x1+0+ 关于模型和误差分量的假设还是和简单线性回归的一样,记住,因为现在有了超过1个的输入特征,我们假设它们是相互独立的.我们在讲解多元线性回归时不会再使用模拟数据,而是要分析两套实际环境下的数据集. 2.3.1 预测CPU性能 我们的第一个实际环境下的数据集由研究者Dennis F. Kibler

预测分析:R语言实现2.7 正则化

2.7 正则化 变量选择是一个重要的过程,因为它试图通过去除与输出无关的变量,让模型解释更简单.训练更容易,并且没有虚假的关联.这是处理过拟合问题的一种可能的方法.总体而言,我们并不期望一个模型能完全拟合训练数据.实际上,过拟合问题通常意味着,如果过分拟合训练数据,对我们在未知数据上的预测模型精确度反而是有害的.在关于正则化(regularization)的这一节,我们要学习一种减少变量数以处理过拟合的替代方法.正则化实质上是在训练程序中引入刻意的偏误或约束条件,以此防止系数取值过大的一个过程.

预测分析:R语言实现2.2 简单线性回归

2.2 简单线性回归 在着眼于某些真实环境的数据集之前,尝试在人造数据上训练模型是非常有帮助的.在这样的人造场景里,我们事先就知道了实际输出函数是什么,而这对于真实环境的数据来说通常是不成立的.进行这种练习的好处是,它会让我们对自己的模型在所有假设都完全成立的理想场景下的工作情况有清楚的了解,而且它有助于对具备理想的线性拟合时发生的情况进行可视化.我们先模拟一个简单线性回归模型.后面的R语言代码片段会为下面这个只有1个输入特征的线性模型创建一个带有100条模拟观测数据的数据框: y=1.67x1

预测分析:R语言实现2.6 特征选择

2.6 特征选择 我们的CPU模型只有6个特征.通常,我们遇到实际环境的数据集会具有来自多种不同观测数据的非常大量的特征.另外,我们会在不太确定哪些特征在影响输出变量方面比较重要的情况下,不得不采用大量的特征.除此之外,我们还有会遇到可能要分很多水平的分类变量,对它们我们只能创建大量的新指示变量,正如在第1章里所看到的那样.当面对的场景涉及大量特征时,我们经常会发现输出只依赖于它们的一个子集.给定k个输入特征,可以形成2k个不同的子集,因此即使对于中等数量的特征,子集的空间也会大到无法通过逐个子