概述
我们在谈Handler机制的时候,其实也就是谈Handler、Message、Looper、MessageQueue之间的关系,对于其工作原理我们不做详解(Handler机制详解)。
- Message:Handler发送、接收和处理的消息对象
- Looper:每个线程只能拥有一个Looper.它的looper()方法负责循环读取MessageQueue中的消息并将读取到的消息交给发送该消息的handler进行处理。
- MessageQueue:消息队列,它采用先进先出的方式来管理Message。程序在创建Looper对象时,会在它的构造器中创建MessageQueue。
Handler类简析
Handler类的主要作用有两个:在新启动的线程中发送消息;在主线程中获取和处理消息。
而要完整的理解Handler机制,对于Looper的底层存储和轮询机制是必须了解的,看过了其实就很简单,今天就专门讲这个。
ThreadLocal详解
为了方便大家理解,我们直接看源码:
public class ThreadLocal<T> {
.....
}
这里可以看出threadlocal是一个范型类,这标志着threadlocal可以存储所有数据,作为存储数据来说,我们首先想到的是会对外提供set(),get(),remove(),等方法。
set()方法:
/**
* Sets the value of this variable for the current thread. If set to
* {@code null}, the value will be set to null and the underlying entry will
* still be present.
*
* @param value the new value of the variable for the caller thread.
*/
public void set(T value) {
Thread currentThread = Thread.currentThread();
Values values = values(currentThread);
if (values == null) {
values = initializeValues(currentThread);
}
values.put(this, value);
}
从源码可以看出,首先获取当前线程,然后调用values方法,我们来看下values方法:
/**
* Gets Values instance for this thread and variable type.
*/
Values values(Thread current) {
return current.localValues;
}
该方法是返回当前线程的一个存储实类,那ThreadLocal又是什么呢?上面说过 ThreadLocal是一个线程内部的数据存储类,通过它可以在指定的线程中存储数据,数据存储以后,只有在指定线程中可以获取到存储的数据。
我们来看几个ThreadLocal方法,先回到set方法,得到values的实类以后会来一个判断,为null调用initializeValues(currentThread)
Values initializeValues(Thread current) {
return current.localValues = new Values();
}
接下来调用value的put方法,我们想到的应该是往里面插值,也就是我们说的put()。
void put(ThreadLocal<?> key, Object value) {
cleanUp();
// Keep track of first tombstone. That's where we want to go back
// and add an entry if necessary.
int firstTombstone = -1;
for (int index = key.hash & mask;; index = next(index)) {
Object k = table[index];
if (k == key.reference) {
// Replace existing entry.
table[index + 1] = value;
return;
}
if (k == null) {
if (firstTombstone == -1) {
// Fill in null slot.
table[index] = key.reference;
table[index + 1] = value;
size++;
return;
}
// Go back and replace first tombstone.
table[firstTombstone] = key.reference;
table[firstTombstone + 1] = value;
tombstones--;
size++;
return;
}
// Remember first tombstone.
if (firstTombstone == -1 && k == TOMBSTONE) {
firstTombstone = index;
}
}
}
从源码可以看出,把values的值传入到一个table数组的key.reference的下一个下标中,至此,我们了解了Threadlocal的存值过程,首先会获取当前线程,根据当前线程获取Values存储类,该存储类在该线程是单例的,在调用values存储类中的put方法,最终将存储的内容存储到Values内部类的table数组下标为key.reference中 。
接下来我们来看一下取值的方法:
public T get() {
// Optimized for the fast path.
Thread currentThread = Thread.currentThread();
Values values = values(currentThread);
if (values != null) {
Object[] table = values.table;
int index = hash & values.mask;
if (this.reference == table[index]) {
return (T) table[index + 1];
}
} else {
values = initializeValues(currentThread);
}
return (T) values.getAfterMiss(this);
}
ThreadLocal的get方法的逻辑也比较清晰,它同样是取出当前线程的localValues对象,如果这个对象为null那么就返回初始值,初始值由ThreadLocal的initialValue方法来描述。
protected T initialValue() {
return null;
}
如果localValues对象不为null,那就取出它的table数组并找出ThreadLocal的reference对象在table数组中的位置,然后table数组中的下一个位置所存储的数据就是ThreadLocal的值。
接着我们再来看一下remove的方法实现:
void remove(ThreadLocal<?> key) {
cleanUp();
for (int index = key.hash & mask;; index = next(index)) {
Object reference = table[index];
if (reference == key.reference) {
// Success!
table[index] = TOMBSTONE;
table[index + 1] = null;
tombstones++;
size--;
return;
}
if (reference == null) {
// No entry found.
return;
}
}
}
到此我们就完全明白了ThreadLocal的存取原理了:通过ThreadLocal的set和get方法可以看出,它们所操作的对象都是当前线程的localValues对象的table数组,因此在不同线程中访问同一个ThreadLocal的set和get方法,它们对ThreadLocal所做的读写操作仅限于各自线程的内部,这就是为什么ThreadLocal可以在多个线程中互不干扰地存储和修改数据。