C语言内存分配与释放的详解

什么是堆?说到堆,又忍不住说到了栈!什么是 栈?

1、什么是堆:堆是大家共有的空间,分全局堆和局部堆。全局堆就是所有没有分配的空间,局部堆就是用户分配的空间。堆在操作系统对进程 初始化的时候分配,运行过程中也可以向系统要额外的堆,但是记得用完了要还给操作系统,要不然就是内存泄漏。

2、什么是栈:栈是线程独有的,保存其运行状态和局部自动变量的。栈在线程开始的时候初始化,每个线程的栈互相独立。每个函数都有自己的栈,栈被用来在函数之间传递参数。操作系统在切换线程的时候会自动的切换栈,就是切换SS/ESP寄存器。栈空间不需要在高级语言里面显式的分配和释放。

C语言程序编译的内存分配,堆与栈的区别:

栈是由编译器自动分配释放,存放函数的参数值、局部变量的值等。操作方式类似于数据结构中的栈。
堆一般由程序员分配释放,若不释放,程序结束时可能由OS回收。注意这里说是可能,并非一定。再强调一次,记得要释放!
栈区(stack) :
//windows下,栈内存分配2M(确定的常数),超出了限制,提示stack overflow错误
//编译器自动分配释放,主要存放函数的参数值,局部变量值等;
堆区(heap):程序员手动分配释放,操作系统80%内存

全局区或静态区:存放全局变量和静态变量;程序结束时由系统释放,分为全局初始化区和全局未初始化区;

字符常量区:常量字符串放与此,程序结束时由系统释放;

程序代码区:存放函数体的二进制代码。

栗子:

int a=0;        //全局初始化区
char *p1;       //全局未初始化区
void main()
{
   int b;          //栈
   char s[]="bb";  //栈
   char *p2;       //栈
   char *p3="123"; //其中,“123\0”常量区,p3在栈区
   static int c=0; //全局区
   p1=(char*)malloc(10);   //10个字节区域在堆区
   strcpy(p1,"123");    //"123\0"在常量区,编译器 可能 会优化为和p3的指向同一块区域
 
}
栈内存

void stackFun(){
  int a[1024];
  //栈内存自动释放
}
堆内存

void heapFun(){
  //40M内存
  //字节
  //void *任意类型的指针
  int* p = malloc(1024 * 1024 * 10 * sizeof(int));

  //释放
  free(p);
}
void main(){ 
  //在堆内存上,分配40M的内存
  while (1){
    Sleep(1000); 
    stackFun();
  }

  getchar();
}
创建一个数组,动态指定数组的大小(在程序运行过长中,可以随意的开辟指定大小的内存,以供使用,相当于Java中的集合)

静态内存分配,分配内存大小的是固定,问题:1.很容易超出栈内存的最大值 2.为了防止内存不够用会开辟更多的内存,容易浪费内存

动态内存分配,在程序运行过程中,动态指定需要使用的内存大小,手动释放,释放之后这些内存还可以被重新使用(活水)

函数:calloc() 分配内存空间并初始化

calloc() 函数用来动态地分配内存空间并初始化为 0,其原型为:

void* calloc (size_t num, size_t size);
calloc() 在内存中动态地分配 num 个长度为 size 的连续空间,并将每一个字节都初始化为 0。所以它的结果是分配了 num*size 个字节长度的内存空间,并且每个字节的值都是0。

【返回值】分配成功返回指向该内存的地址,失败则返回 NULL。

函数:malloc() 动态地分配内存空间

malloc() 函数用来动态地分配内存空间(如果你不了解动态内存分配,请查看:C语言动态内存分配及变量存储类别),其原型为:

void* malloc (size_t size);
应用在程序中代码如下:

void main(){
  //静态内存分配创建数组,数组的大小是固定的
  //int i = 10;
  //int a[i];

  int len;
  printf("输入数组的长度:");
  scanf("%d",&len);

  //开辟内存,大小len*4字节
  int* p = malloc(len * sizeof(int));
  //p是数组的首地址,p就是数组的名称
  //给数组元素赋值(使用这一块刚刚开辟出来的内存区域)
  int i = 0;
  for (; i < len - 1; i++){
    p[i] = rand() % 100;
    printf("%d,%#x\n", p[i], &p[i]);
  }
 
  //手动释放内存
  //free()释放动态分配的内存空间
  free(p);

  getchar();
}
realloc 重新分配内存

void main(){
  int len;
  printf("第一次输入数组的长度:");
  scanf("%d", &len);

  //int* p = malloc(len * sizeof(int)); 
  int* p = calloc(len, sizeof(int));
  int i = 0;
  for (; i < len; i++){
    p[i] = rand() % 100;
    printf("%d,%#x\n", p[i], &p[i]);
  }

  int addLen;
  printf("输入数组增加的长度:");
  scanf("%d", &addLen);
  //内存不够用,扩大刚刚分配的内存空间
  //1.原来内存的指针 2.内存扩大之后的总大小  
  int* p2 = realloc(p, sizeof(int) * (len + addLen));
  if (p2 == NULL){
    printf("重新分配失败,世界那么大,容不下我。。。");
  }
新分配内存的两种情况:

//缩小,缩小的那一部分数据会丢失

//扩大,(连续的)

1.如果当前内存段后面有需要的内存空间,直接扩展这段内存空间,realloc返回原指针

2.如果当前内存段后面的空闲字节不够,那么就使用堆中的第一个能够满足这一要求的内存块,将目前的数据复制到新的位置,并将原来的数据库释放掉,返回新的内存地址

3.如果申请失败,返回NULL,原来的指针仍然有效

//接着上面的代码重新赋值
  i = 0;
  printf("--------------------------\n");
  for (; i < len + addLen; i++){
    p2[i] = rand() % 200;
    printf("%d,%#x\n", p2[i], &p2[i]);
  }

  //手动释放内存
  if (p != NULL){
    free(p);
    p = NULL;
  } 
  if (p2 != NULL){
    free(p2);
    p2 = NULL;
  }

  getchar();
}
内存分配的几个注意细节

1.不能多次释放;

2.释放完之后(指针仍然有值),给指针置NULL,标志释放完成;

3.内存泄露(p重新赋值之后,再free,并没有真正释放内存);

void main(){
  int len;
  printf("输入数组的长度:");
  scanf("%d", &len);

  int* p = malloc(len * sizeof(int));  
  int i = 0;
  for (; i < len; i++){
    p[i] = rand() % 100;
    printf("%d,%#x\n", p[i], &p[i]);
  }

  if (p != NULL){
    free(p);
    p = NULL;
  }

  getchar();
}

 刚刚在一篇博文看到一个简单的问题:

//code1
char* toStr()
{
    char *s = "abcdefghijkl";
    return s;
}
int main()
{
    cout << toStr() << endl;
    return 0;
}

//code2
char* toStr()
{
    char s[] = "abcdefghijkl";
    return s;
}
int main()
{
    cout << toStr() << endl;
    return 0;
}

  两段代码都很简单,输出一段字符,类型不同,一个是char*字符串,一个是char[]数据。

  结果你知道吗? 这个我确实知道,相信大部分人也都回知道,必然有一个不好使,或者两个都不好使!!!都对就没意思了~

  结果:第一个正确输出,第二个输出乱码。

  原因:在于局部变量的作用域和内存分配的问题,第一char*是指向一个常量,作用域为函数内部,被分配在程序的常量区,直到整个程序结束才被销毁,所以在程序结束前常量还是存在的。而第二个是数组存放的,作用域为函数内部,被分配在栈中,就会在函数调用结束后被释放掉,这时你再调用,肯定就错误了。

内存分配

  什么是局部变量、全局变量和静态变量?

  顾名思义,局部变量就是在一个有限的范围内的变量,作用域是有限的,对于程序来说,在一个函数体内部声明的普通变量都是局部变量,局部变量会在栈上申请空间,函数结束后,申请的空间会自动释放。而全局变量是在函数体外申请的,会被存放在全局(静态区)上,知道程序结束后才会被结束,这样它的作用域就是整个程序。静态变量和全局变量的存储方式相同,在函数体内声明为static就可以使此变量像全局变量一样使用,不用担心函数结束而被释放。

相关函数:

void *malloc(size_t size);
void free(void *p);

/*一般这样用
Struct elem *p;
p = (struct elem*)malloc(sizeof(struct elem))

void free(p)
*/

malloc原理

  malloc函数的实质体现在,它有一个将可用的内存块连接为一个长长的列表的所谓空闲链表。调用malloc函数时,它沿连接表寻找一个大到足以满足用户请求所需要的内存块。然后,将该内存块一分为二(一块的大小与用户请求的大小相等,另一块的大小就是剩下的字节)。接下来,将分配给用户的那块内存传给用户,并将剩下的那块(如果有的话)返回到连接表上。调用free函数时,它将用户释放的内存块连接到空闲链上。到最后,空闲链会被切成很多的小内存片段,如果这时用户申请一个大的内存片段,那么空闲链上可能没有可以满足用户要求的片段了。于是,malloc函数请求延时,并开始在空闲链上翻箱倒柜地检查各内存片段,对它们进行整理,将相邻的小空闲块合并成较大的内存块。如果无法获得符合要求的内存块,malloc函数会返回NULL指针,因此在调用malloc动态申请内存块时,一定要进行返回值的判断。

分类:

栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表
全局区(静态区)(static)—全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态                                  变量在相邻的另一块区域。  程序结束后由系统释放。
常量区—常量字符串就是放在这里的,直到程序结束后由系统释放。上面的问题就在这里!!!
代码区—存放函数体的二进制代码。
直接搬运的代码,确实很好!!容易理解

//main.cpp   
int a = 0; //全局初始化区
char *p1; //全局未初始化区
   
main()
{
    int b; //栈
    char s[] = "abc"; //栈
    char *p2; //栈
    char *p3 = "123456"; //123456\\0在常量区,p3在栈上。
    static int c =0;//全局(静态)初始化区
    p1 = (char *)malloc(10);   
    p2 = (char *)malloc(20);//分配得来得10和20字节的区域就在堆区。
    strcpy(p1, "123456"); //123456\\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。       
}

此外,还有realloc(重新分配内存)、calloc(初始化为0)、alloca(在栈上申请内存,自动释放)等。
以上就是C语言中对内存的分配与释放,常用的几个函数~

时间: 2024-07-30 00:22:04

C语言内存分配与释放的详解的相关文章

C语言内存分配管理常见bug

标准C库提供了4个内存管理函数:malloc.calloc.realloc和free. bug1 调用free释放p指向的内存块之后,p就是一个悬挂指针--指向逻辑上不存在的内存的指针.如果引用这个悬挂指针,会导致不可预见的错误. ElemType* p = (ElemType*)malloc(sizeof(ElemType) * NUM); ... free(p);// p = NULL; ... *p = "..."; bug2 释放空闲内存,破坏内存管理函数所用的数据结构. El

c语言-C语言内存分配malloc导致的程序退出

问题描述 C语言内存分配malloc导致的程序退出 char *p; while (1) { p = malloc(1); *p = 0; } 这样写最后是因为没有内存退出还是向0写入退出?怎么感觉是内存完了 解决方案 内存分配失败就会返回空指针 解决方案二: 堆内存被使用完后,在申请就睡失败,p就是NULL,即地址为0写入,而这个地址是受程序保护的,无法写入因此退出 解决方案三: 个人觉得你这个应该是会导致堆内存不够,导致程序异常退出

C语言中的内存分配与释放

对C语言一直都是抱着学习的态度,很多都不懂,今天突然被问道C语言的内存分配问题,说了一些自己知道的,但感觉回答的并不完善,所以才有这篇笔记,总结一下C语言中内存分配的主要内容. 相关问题 刚刚在一篇博文看到一个简单的问题: //code1 char* toStr() { char *s = "abcdefghijkl"; return s; } int main() { cout << toStr() << endl; return 0; } //code2 c

C语言中多维数组的内存分配和释放(malloc与free)的方法_C 语言

如果要给二维数组(m*n)分配空间,代码可以写成下面: 复制代码 代码如下: char **a, i; // 先分配m个指针单元,注意是指针单元 // 所以每个单元的大小是sizeof(char *) a = (char **) malloc(m * sizeof(char * )); // 再分配n个字符单元, // 上面的m个指针单元指向这n个字符单元首地址 for(i = 0; i < m; i++) a[i] = (char * )malloc(n * sizeof(char )); 释

内存分配和释放

     自从学习了C语言,老师就教导我们说:对于动态内存的申请和释放,一定要遵守"谁申请,谁释放"的原则.在此原则的指导下,不仅是我.不仅是你,就连特级大师都设计了这样怪怪的函数: 函数 说明 评论 GetWindowText(HWND,LPTSTR,int) 取得窗口标题.需要在参数中给出保存标题所使用的内存指针,和这块内存的尺寸. 晕!我又不知道窗口标题的长度,居然还要我提供尺寸?!没办法,只能估摸着给一个大一些的尺寸吧. sprintf(char *,const char *,

关于c语言内存分配,malloc,free,和段错误,内存泄露

1.   C语言的函数malloc和free  (1) 函数malloc和free在头文件<stdlib.h>中的原型及参数        void * malloc(size_t size) 动态配置内存,大小有size决定,返回值成功时为任意类型指针,失败时为NULL.        void  free(void *ptr) 释放动态申请的内存空间,调用free()后ptr所指向的内存空间被收回,如果ptr指向未知地方或者指向的空间已被收回,则会发生不可预知的错误,如果ptr为NULL,

基于一个简单定长内存池的实现方法详解_C 语言

    主要分为 3 个部分,memoryPool 是管理内存池类,block 表示内存块,chunk 表示每个存储小块.它们之间的关系为,memoryPool 中有一个指针指向某一起始 block,block 之前通过 next 指针构成链表结构的连接,每个 block 包含指定数量的 chunk.每次分配内存的时候,分配 chunk 中的数据地址. 主要数据结构设计: Block: 复制代码 代码如下: struct block {    block * next;//指向下一个block指

C语言实现排序算法之归并排序详解_C 语言

排序算法中的归并排序(Merge Sort)是利用"归并"技术来进行排序.归并是指将若干个已排序的子文件合并成一个有序的文件. 一.实现原理: 1.算法基本思路 设两个有序的子文件(相当于输入堆)放在同一向量中相邻的位置上:R[low..m],R[m+1..high],先将它们合并到一个局部的暂存向量R1(相当于输出堆)中,待合并完成后将R1复制回R[low..high]中. (1)合并过程 合并过程中,设置i,j和p三个指针,其初值分别指向这三个记录区的起始位置.合并时依次比较R[i

Linux下C++内存管理的指针传递详解

指针参数是如何传递内存的? 如果函数的参数是一个指针,不要指望用该指针去申请动态内存.示例7-4-1中,Test函数的语句 GetMemory(str, 200)并没有使str获得期望的内存,str依旧是NULL,为什么? void GetMemory(char *p, int num) { p = (char *)malloc(sizeof(char) * num); } void Test(void) { char *str = NULL; GetMemory(str, 100); // s