Java并发编程:Synchronized及其实现原理

一、Synchronized的基本使用
  Synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法。Synchronized的作用主要有三个:
(1)确保线程互斥的访问同步代码
(2)保证共享变量的修改能够及时可见
(3)有效解决重排序问题。从语法上讲,Synchronized总共有三种用法:
  (a)修饰普通方法
  (b)修饰静态方法
  (c)修饰代码块
  接下来我就通过几个例子程序来说明一下这三种使用方式(为了便于比较,三段代码除了Synchronized的使用方式不同以外,其他基本保持一致)。
1、没有同步的情况:
代码段一:

1  package com.paddx.test.concurrent;
2
3  public class SynchronizedTest {
4  public void method1(){
5  System.out.println("Method 1 start");
6  try {
7  System.out.println("Method 1 execute");
8  Thread.sleep(3000);
9 } catch (InterruptedException e) {
10 e.printStackTrace();
11 }
12 System.out.println("Method 1 end");
13 }
14
15 public void method2(){
16 System.out.println("Method 2 start");
17 try {
18 System.out.println("Method 2 execute");
19 Thread.sleep(1000);
20 } catch (InterruptedException e) {
21 e.printStackTrace();
22 }
23 System.out.println("Method 2 end");
24 }
25
26 public static void main(String[] args) {
27 final SynchronizedTest test = new SynchronizedTest();
28
29 new Thread(new Runnable() {
30 @Override
31 public void run() {
32 test.method1();
33 }
34 }).start();
35
36 new Thread(new Runnable() {
37 @Override 38 public void run() {
39 test.method2();
40 }
41 }).start();
42 }
43 }

执行结果如下,线程1和线程2同时进入执行状态,线程2执行速度比线程1快,所以线程2先执行完成,这个过程中线程1和线程2是同时执行的。

Method 1start
Method 1execute
Method 2start
Method 2execute
Method 2end
Method 1end

2、对普通方法同步:
代码段二:

1 package com.paddx.test.concurrent;
2
3 public class SynchronizedTest {
4 public synchronized void method1(){
5 System.out.println("Method 1 start");
6 try {
7 System.out.println("Method 1 execute");
8 Thread.sleep(3000);
9 } catch (InterruptedException e) {
10 e.printStackTrace();
11 }
12 System.out.println("Method 1 end");
13 }
14
15 public synchronized void method2(){
16 System.out.println("Method 2 start");
17 try {
18 System.out.println("Method 2 execute");
19 Thread.sleep(1000);
20 } catch (InterruptedException e) {
21 e.printStackTrace();
22 }
23 System.out.println("Method 2 end");
24 }
25
26 public static void main(String[] args) {
27 final SynchronizedTest test = new SynchronizedTest();
28
29 new Thread(new Runnable() {
30 @Override
31 public void run() {
32 test.method1();
33 }
34 }).start();
35
36 new Thread(new Runnable() {
37 @Override
38 public void run() {
39 test.method2();
40 }
41 }).start();
42 }
43 }

执行结果如下,跟代码段一比较,可以很明显的看出,线程2需要等待线程1的method1执行完成才能开始执行method2方法。

Method 1start
Method 1execute
Method 1end
Method 2start
Method 2execute
Method 2end

3、静态方法(类)同步
代码段三:

1 package com.paddx.test.concurrent;
2
3 public class SynchronizedTest {
4 public static synchronized void method1(){
5 System.out.println("Method 1 start");
6 try {
7 System.out.println("Method 1 execute");
8 Thread.sleep(3000);
9 } catch (InterruptedException e) {
10 e.printStackTrace();
11 }
12 System.out.println("Method 1 end");
13 }
14
15 public static synchronized void method2(){
16 System.out.println("Method 2 start");
17 try {
18 System.out.println("Method 2 execute");
19 Thread.sleep(1000);
20 } catch (InterruptedException e) {
21 e.printStackTrace();
22 }
23 System.out.println("Method 2 end");
24 }
25
26 public static void main(String[] args) {
27 final SynchronizedTest test = new SynchronizedTest();
28 final SynchronizedTest test2 = new SynchronizedTest();
29
30 new Thread(new Runnable() {
31 @Override
32 public void run() {
33 test.method1();
34 }
35 }).start();
36
37 new Thread(new Runnable() {
38 @Override
39 public void run() {
40 test2.method2();
41 }
42 }).start();
43 }
44 }

  执行结果如下,对静态方法的同步本质上是对类的同步(静态方法本质上是属于类的方法,而不是对象上的方法),所以即使test和test2属于不同的对象,但是它们都属于SynchronizedTest类的实例,所以也只能顺序的执行method1和method2,不能并发执行。

Method 1start
Method 1execute
Method 1end
Method 2start
Method 2execute
Method 2end

4、代码块同步
代码段四:

1 package com.paddx.test.concurrent;
2
3 public class SynchronizedTest {
4 public void method1(){
5 System.out.println("Method 1 start");
6 try {
7 synchronized (this) {
8 System.out.println("Method 1 execute");
9 Thread.sleep(3000);
10 }
11 } catch (InterruptedException e) {
12 e.printStackTrace();
13 }
14 System.out.println("Method 1 end");
15 }
16
17 public void method2(){
18 System.out.println("Method 2 start");
19 try {
20 synchronized (this) {
21 System.out.println("Method 2 execute");
22 Thread.sleep(1000);
23 }
24 } catch (InterruptedException e) {
25 e.printStackTrace();
26 }
27 System.out.println("Method 2 end");
28 }
29
30 public static void main(String[] args) {
31 final SynchronizedTest test = new SynchronizedTest();
32
33 new Thread(new Runnable() {
34 @Override
35 public void run() {
36 test.method1();
37 }
38 }).start();
39
40 new Thread(new Runnable() {
41 @Override
42 public void run() {
43 test.method2();
44 }
45 }).start();
46 }
47 }

执行结果如下,虽然线程1和线程2都进入了对应的方法开始执行,但是线程2在进入同步块之前,需要等待线程1中同步块执行完成。

Method 1start
Method 1execute
Method 2start
Method 1end
Method 2execute
Method 2end

二、Synchronized 原理
  如果对上面的执行结果还有疑问,也先不用急,我们先来了解Synchronized的原理,再回头上面的问题就一目了然了。我们先通过反编译下面的代码来看看Synchronized是如何实现对代码块进行同步的:
1 package com.paddx.test.concurrent; 2 3 public class SynchronizedDemo { 4 public void method() { 5 synchronized (this) { 6 System.out.println("Method 1 start"); 7 } 8 } 9 }
反编译结果:

关于这两条指令的作用,我们直接参考JVM规范中描述:
monitorenter :
Each object is associated with a monitor. A monitor is locked if and only if it has an owner. The thread that executes monitorenter attempts to gain ownership of the monitor associated with objectref, as follows:
• If the entry count of the monitor associated with objectref is zero, the thread enters the monitor and sets its entry count to one. The thread is then the owner of the monitor.
• If the thread already owns the monitor associated with objectref, it reenters the monitor, incrementing its entry count.
• If another thread already owns the monitor associated with objectref, the thread blocks until the monitor's entry count is zero, then tries again to gain ownership.
这段话的大概意思为:
每个对象有一个监视器锁(monitor)。当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程如下:
1、如果monitor的进入数为0,则该线程进入monitor,然后将进入数设置为1,该线程即为monitor的所有者。
2、如果线程已经占有该monitor,只是重新进入,则进入monitor的进入数加1.
3.如果其他线程已经占用了monitor,则该线程进入阻塞状态,直到monitor的进入数为0,再重新尝试获取monitor的所有权。
monitorexit: 
The thread that executes monitorexit must be the owner of the monitor associated with the instance referenced by objectref.
The thread decrements the entry count of the monitor associated with objectref. If as a result the value of the entry count is zero, the thread exits the monitor and is no longer its owner. Other threads that are blocking to enter the monitor are allowed to attempt to do so.
这段话的大概意思为:
执行monitorexit的线程必须是objectref所对应的monitor的所有者。
指令执行时,monitor的进入数减1,如果减1后进入数为0,那线程退出monitor,不再是这个monitor的所有者。其他被这个monitor阻塞的线程可以尝试去获取这个 monitor 的所有权。
  通过这两段描述,我们应该能很清楚的看出Synchronized的实现原理,Synchronized的语义底层是通过一个monitor的对象来完成,其实wait/notify等方法也依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。
  我们再来看一下同步方法的反编译结果:
源代码:
1 package com.paddx.test.concurrent; 2 3 public class SynchronizedMethod { 4 public synchronized void method() { 5 System.out.println("Hello World!"); 6 } 7 }
反编译结果:

  从反编译的结果来看,方法的同步并没有通过指令monitorenter和monitorexit来完成(理论上其实也可以通过这两条指令来实现),不过相对于普通方法,其常量池中多了ACC_SYNCHRONIZED标示符。JVM就是根据该标示符来实现方法的同步的:当方法调用时,调用指令将会检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先获取monitor,获取成功之后才能执行方法体,方法执行完后再释放monitor。在方法执行期间,其他任何线程都无法再获得同一个monitor对象。 其实本质上没有区别,只是方法的同步是一种隐式的方式来实现,无需通过字节码来完成。

三、运行结果解释
  有了对Synchronized原理的认识,再来看上面的程序就可以迎刃而解了。
1、代码段2结果:
  虽然method1和method2是不同的方法,但是这两个方法都进行了同步,并且是通过同一个对象去调用的,所以调用之前都需要先去竞争同一个对象上的锁(monitor),也就只能互斥的获取到锁,因此,method1和method2只能顺序的执行。
2、代码段3结果:
  虽然test和test2属于不同对象,但是test和test2属于同一个类的不同实例,由于method1和method2都属于静态同步方法,所以调用的时候需要获取同一个类上monitor(每个类只对应一个class对象),所以也只能顺序的执行。
3、代码段4结果:

 对于代码块的同步实质上需要获取Synchronized关键字后面括号中对象的monitor,由于这段代码中括号的内容都是this,而method1和method2又是通过同一的对象去调用的,所以进入同步块之前需要去竞争同一个对象上的锁,因此只能顺序执行同步块。

四 总结
  Synchronized是Java并发编程中最常用的用于保证线程安全的方式,其使用相对也比较简单。但是如果能够深入了解其原理,对监视器锁等底层知识有所了解,一方面可以帮助我们正确的使用Synchronized关键字,另一方面也能够帮助我们更好的理解并发编程机制,有助我们在不同的情况下选择更优的并发策略来完成任务。对平时遇到的各种并发问题,也能够从容的应对。

时间: 2024-08-02 13:54:50

Java并发编程:Synchronized及其实现原理的相关文章

Java 并发编程学习笔记之Synchronized简介_java

一.Synchronized的基本使用 Synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法.Synchronized的作用主要有三个:(1)确保线程互斥的访问同步代码(2)保证共享变量的修改能够及时可见(3)有效解决重排序问题.从语法上讲,Synchronized总共有三种用法: (1)修饰普通方法 (2)修饰静态方法 (3)修饰代码块 接下来我就通过几个例子程序来说明一下这三种使用方式(为了便于比较,三段代码除了Synchronized的使用方式不同以外,

Java并发编程:从根源上解析volatile关键字的实现

Java并发编程:volatile关键字解析 1.解析概览 内存模型的相关概念 并发编程中的三个概念 Java内存模型 深入剖析volatile关键字 使用volatile关键字的场景 2.内存模型的相关概念 缓存一致性问题.通常称这种被多个线程访问的变量为共享变量. 也就是说,如果一个变量在多个CPU中都存在缓存(一般在多线程编程时才会出现),那么就可能存在缓存不一致的问题. 为了解决缓存不一致性问题,通常来说有以下2种解决方法: 通过在总线加LOCK#锁的方式 通过缓存一致性协议 这2种方式

《Java 并发编程的艺术》迷你书

本文源自InfoQ发表的<Java 并发编程的艺术>电子书  作者:方腾飞  序言:张龙 免费下载此迷你书 推荐序 欣闻腾飞兄弟的<聊聊并发>系列文章将要集结成InfoQ迷你书进行发布,我感到非常的振奋.这一系列文章从最开始的发布到现在已经经历了两年多的时间,这两年间,Java世界发生了翻天覆地的变化.Java 7已经发布,而且Java 8也将在下个月姗姗来迟.围绕着JVM已经形成了一个庞大且繁荣的生态圈,Groovy.Scala.Clojure.Ceylon等众多JVM语言在蓬勃

《Java并发编程的艺术》导读

前 言 为什么要写这本书 记得第一次写并发编程的文章时还是在2012年,当时花了几个星期的时间写了一篇文章<深入分析volatile的实现原理>,准备在自己的博客中发表.在同事建法的建议下,怀着试一试的心态投向了InfoQ,庆幸的是半小时后得到InfoQ主编采纳的回复,高兴之情无以言表.这也是我第一次在专业媒体上发表文章,而后在InfoQ编辑张龙的不断鼓励和支持下,我陆续在InfoQ发表了几篇与并发编程相关的文章,于是便形成了"聊聊并发"专栏.在这个专栏的写作过程中,我得到

《Java并发编程的艺术》一一2.1 volatile的应用

2.1 volatile的应用 在多线程并发编程中synchronized和volatile都扮演着重要的角色,volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的"可见性".可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值.如果volatile变量修饰符使用恰当的话,它比synchronized的使用和执行成本更低,因为它不会引起线程上下文的切换和调度.本文将深入分析在硬件层面上Intel处理器是如何实现volatile的,

Java并发编程之性能、扩展性和响应_java

本文讨论的重点在于多线程应用程序的性能问题.我们会先给性能和扩展性下一个定义,然后再仔细学习一下Amdahl法则.下面的内容我们会考察一下如何用不同的技术方法来减少锁竞争,以及如何用代码来实现. 1.性能 我们都知道,多线程可以用来提高程序的性能,背后的原因在于我们有多核的CPU或多个CPU.每个CPU的内核都可以自己完成任务,因此把一个大的任务分解成一系列的可彼此独立运行的小任务就可以提高程序的整体性能了.可以举个例子,比如有个程序用来将硬盘上某个文件夹下的所有图片的尺寸进行修改,应用多线程技

Java并发编程总结——慎用CAS详解_java

一.CAS和synchronized适用场景 1.对于资源竞争较少的情况,使用synchronized同步锁进行线程阻塞和唤醒切换以及用户态内核态间的切换操作额外浪费消耗cpu资源:而CAS基于硬件实现,不需要进入内核,不需要切换线程,操作自旋几率较少,因此可以获得更高的性能. 2.对于资源竞争严重的情况,CAS自旋的概率会比较大,从而浪费更多的CPU资源,效率低于synchronized.以java.util.concurrent.atomic包中AtomicInteger类为例,其getAn

Java 并发编程学习笔记之核心理论基础_java

并发编程是Java程序员最重要的技能之一,也是最难掌握的一种技能.它要求编程者对计算机最底层的运作原理有深刻的理解,同时要求编程者逻辑清晰.思维缜密,这样才能写出高效.安全.可靠的多线程并发程序.本系列会从线程间协调的方式(wait.notify.notifyAll).Synchronized及Volatile的本质入手,详细解释JDK为我们提供的每种并发工具和底层实现机制.在此基础上,我们会进一步分析java.util.concurrent包的工具类,包括其使用方式.实现源码及其背后的原理.本

Java并发编程总结3——AQS、ReentrantLock、ReentrantReadWriteLock(转)

本文内容主要总结自<Java并发编程的艺术>第5章--Java中的锁.   一.AQS AbstractQueuedSynchronizer(简称AQS),队列同步器,是用来构建锁或者其他同步组建的基础框架.该类主要包括: 1.模式,分为共享和独占. 2.volatile int state,用来表示锁的状态. 3.FIFO双向队列,用来维护等待获取锁的线程. AQS部分代码及说明如下: public abstract class AbstractQueuedSynchronizer exte