C#数据结构与算法揭秘14

  好久, 没写blog了,今天,多写点。 

    上节说到那里了,是不是说图的遍历,这节,我们来通过图的具体的应用了。

    首先,看看最小生成树的应用了。 什么是最小生成树了?

   由生成树的定义可知,无向连通图的生成树不是唯一的,对连通图的不同遍历就得到不同的生成树。图 b 所示是图 (a)所示的无向连通图的部分生成树。

   

 所谓最小生成树是 如果是一个无向连通网, 那么它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小代价生成树(Minimum Cost Spanning Tree).

许多应用问题都是一个求无向连通网的最小生成树问题。例如,要在 n个城市之间铺设光缆, 铺设光缆的费用很高, 并且各个城市之间铺设光缆的费用不同。一个目标是要使这 n个城市的任意两个之间都可以直接或间接通信, 另一个目标是要使铺设光缆的总费用最低。如果把 n个城市看作是图的 n个顶点,两个城市之间铺设的光缆看作是两个顶点之间的边, 这实际上就是求一个无向连通网的最小生成树问题。

由最小生成树的定义可知, 构造有 n个顶点的无向连通网的最小生成树必须满足以下三个条件: 

(1)构造的最小生成树必须包括 n个顶点;
(2)构造的最小生成树有且仅有 n-1条边;
(3)构造的最小生成树中不存在回路。
构造最小生成树的方法有许多种,典型的方法有两种,一种是普里姆(Prim)算法,一种是克鲁斯卡尔(Kruskal)算法。

 

一普里姆(Prim)算法

 

假设 G=(V,E)为一无向连通网,其中,V 为网中顶点的集合,E 为网中边的集合。设置两个新的集合 U 和 T,其中,U 为 G 的最小生成树的顶点的集合,T 为 G 的最小生成树的边的集合。普里姆算法的思想是:令集合 U 的初值为 U={u1}(假设构造最小生成树时从顶点 u1开始) ,集合 T 的初值为 T={}。从所有的顶点 u∈U 和顶点 v∈V-U 的带权边中选出具有最小权值的边(u,v) ,将顶点 v 加入集合 U 中,将边(u,v)加入集合 T 中。如此不断地重复直到 U=V 时,最小生成树构造完毕。此时,集合 U 中存放着最小生成树的所有顶点,集合 T中存放着最小生成树的所有边。

以下图(a)为例,说明用普里姆算法构造图的无向连通网的最小生成树的过程。

 

为了分析问题的方便,无向连通网如图(a)所示。 初始时, 算法的集合 U={A}, 集合 V-U={B,C,D,E}, 集合 T={},如图(b)所示。在所有 u 为集合 U 中顶点、v 为集合 V-U 中顶点的边(u,v)中寻找具有最小权值的边,寻找到的边是(A,D),权值为 20,把顶点 B 加入到集合U 中, 把边(A,D)加入到集合 T 中, 如图 (c)所示。 在所有 u为集合 U 中顶点、v 为集合 V-U 中顶点的边(u,v)中寻找具有最小权值的边, 寻找到的边是(D,E), 权值为 10,把顶点 E 加入到集合 U 中,把边(D,E)加入到集合 T 中,如图(d)所示。随后依次从集合 V-U 中加入到集合 U 中的顶点为 B、C,依次加入到集合T中的边为(A,B)(权值为 60) 、(E,C) (权值为 70) ,分别如图 (e)、(f)所示。最后得到的图(f)所示就是原无向连通网的最小生成树。

本书以无向网的邻接矩阵类 NetAdjMatrix<T>来实现普里姆算法。NetAdjMatrix<T>类的成员字段与无向图邻接矩阵类 GraphAdjMatrix<T>的成员字段一样,不同的是,当两个顶点间有边相连接时,matirx 数组中相应元素的值是边的权值,而不是 1

无向网邻接矩阵类 NetAdjMatrix<T>源代码的实现如下所示:

public class NetAdjMatrix<T> : IGraph<T>//继承与图形的接口
    {
        private Node<T>[] nodes;      //顶点数组     存取相应的结点的 泛型数组
        private int numEdges;         //边的数目     上图边数字是6
        private int[,] matrix;       //邻接矩阵数组      存取相应的互相的权值

        //构造器  进行数据的初始化  边的数目是0
        public NetAdjMatrix (int n)
        {
            nodes = new Node<T>[n];
            matrix = new int[n,n];
            numEdges = 0;
        } 

        //获取索引为index的顶点的信息    算法的时间复杂度是O(1)
        public Node<T> GetNode(int index)
        {
            return nodes[index];
        } 

        //设置索引为index的顶点的信息  算法的时间复杂度是O(1)
        public void SetNode(int index, Node<T> v)
       {
         nodes[index] = v;
       }
        //边的数目属性 可读可写的属性
         public int NumEdges
         {
get
          {
           return numEdges;
          }
          set
          {
           numEdges = value;
          }
         }
         //获取matrix[index1, index2]的值 算法的时间复杂度是O(1)
         public int GetMatrix(int index1, int index2)
         {
          return matrix[index1, index2];
         }
         //设置matrix[index1, index2]的值 算法的复杂度是O(1)
         public void SetMatrix(int index1, int index2, int v)
         {
           matrix[index1, index2] = v;
         }
          //获取顶点的数目 算法的时间的复杂度是O(1)
           public int GetNumOfVertex()
          {
           return nodes.Length;
          }
          //获取边的数目 算法的时间的复杂度是O(1)
        public int GetNumOfEdge()
        {
            return numEdges;
         }
         //v是否是无向网的顶点
         //如果包含这个顶点  返回为真,否则返回为假。
         //由于这是一层循环,算法的复杂度是O(n)
        public bool IsNode(Node<T> v)
        {
            //遍历顶点数组
            foreach (Node<T> nd in nodes)
            {
                //如果顶点nd与v相等,则v是图的顶点,返回true
                if (v.Equals(nd))
                {
                    return true;
                }
            } 

            return false;
        } 

        //获得顶点v在顶点数组中的索引
        //  如果相等,返回相应的索引。
        //由于是一层循环,时间的复杂度是O(n)

        public int GetIndex(Node<T> v)
        {
            int i = -1; 

            //遍历顶点数组
            for (i = 0; i < nodes.Length; ++i)
            {
                //如果顶点nd与v相等,则v是图的顶点,返回索引值
                if (nodes[i].Equals(v))
                {
                    return i;
                }
  }
            return i;
        } 

        //在顶点v1、v2之间添加权值为v的边
        //添加相应的权值的v的边,  这是一个对称矩阵。

        public void SetEdge(Node<T> v1, Node<T> v2, int v)
        {
            //v1或v2不是无向网的顶点
            if (!IsNode(v1) || !IsNode(v2))
            {
                Console.WriteLine("Node is not belong to Graph!");
                return;
            } 

            //矩阵是对称矩阵
            matrix[GetIndex(v1), GetIndex(v2)] = v;
            matrix[GetIndex(v2), GetIndex(v1)] = v;
            ++numEdges;
        } 

        //删除v1和v2之间的边
       // 删除对称矩阵。

        public void DelEdge(Node<T> v1, Node<T> v2)
        {
            //v1或v2不是无向网的顶点
            if (!IsNode(v1) || !IsNode(v2))
            {
                Console.WriteLine("Node is not belong to Graph!");
                return;
            } 

            //v1和v2之间存在边
            if (matrix[GetIndex(v1), GetIndex(v2)] != int.MaxValue)
            {
                //矩阵是对称矩阵
                matrix[GetIndex(v1), GetIndex(v2)] = int.MaxValue;
                matrix[GetIndex(v2), GetIndex(v1)] = int.MaxValue;
                --numEdges;
            }
        } 

        //判断v1和v2之间是否存在边
        //判断相应  不是 最大值  返回为真 否则 为假 算法的时间复杂度O(1)
        public bool IsEdge(Node<T> v1, Node<T> v2)
        {
            //v1或v2不是无向网的顶点
            if (!IsNode(v1) || !IsNode(v2))
            {
                Console.WriteLine("Node is not belong to Graph!");
                return false;
            } 

            //v1和v2之间存在边
            if (matrix[GetIndex(v1), GetIndex(v2)] != int.MaxValue)
            {
                return true;
            }
            Else  //v1和v2之间不存在边
            {
                return false;
            }
        }
}

 具体如图所示:

 

为实现普里姆算法, 需要设置两个辅助一维数组 lowcost和 closevex, lowcost用来保存集合 V-U 中各顶点与集合 U 中各顶点构成的边中具有最小权值的边的权值;closevex 用来保存依附于该边的在集合 U 中的顶点。假设初始状态时,U={u1}(u1为出发的顶点) ,这时有 lowcost[0]=0,它表示顶点 u1已加入集合 U中。数组 lowcost 元素的值是顶点 u1 到其他顶点所构成的直接边的权值。然后不断选取权值最小的边(ui,uk)(ui∈U,uk∈V-U),每选取一条边,就将 lowcost[k]置为 0,表示顶点 uk 已加入集合 U 中。由于顶点 uk 从集合 V-U 进入集合 U 后,这两个集合的内容发生了变化, 就需要依据具体情况更新数组lowcost和closevex中部分元素的值。把普里姆算法 PrimNetAdjMatrix<T>类的成员方法,实现的源代码如下:

public int[] Prim()
    {
        int[] lowcost = new int[nodes.Length];   //权值数组 保存权值的数组
        int[] closevex = new int[nodes.Length];  //顶点数组 保存 相应各个顶点的数组
        int mincost = int.MaxValue;              //最小权值 默认是 int的最大值 表示无穷大

        //辅助数组初始化   对摸个  权值数组赋值   保存 最小值
        for (int i = 1; i < nodes.Length; ++i)
        {
            lowcost[i] = matrix[0, i];
            closevex[i] = 0;
        } 

        //某个顶点加入集合U
        lowcost[0] = 0;
        closevex[0] = 0;
       //判断最小的权值通过的顶点的循环就此开始
      for(int i=0; i<nodes.Length; ++i)
        {
            int k = 1;
            int j = 1; 

            //选取权值最小的边和相应的顶点
            while(j < nodes.Length)
            {
                if (lowcost[j] < mincost && lowcost[j] != 0)
                {
                    k = j;
                }
                ++j;
            } 

            //新顶点加入集合U
            lowcost[k] = 0; 

            //重新计算该顶点到其余顶点的边的权值
            for (j = 1; j < nodes.Length; ++j)
            {
                if (matrix[k, j] < lowcost[j])
                {
                    lowcost[j] = matrix[k, j];
                    closevex[j] = k;
                }
            }
        } 

        return closevex; 

}
//我们明显的看出来,由于用到了双重循环,其算法的时间的复杂度是O(n^2)

具体实现,如图所示:

 

 

在普里姆算法中,第一个for循环的执行次数为n-1,第二个for循环中又包括了一个while循环和一个for循环,执行次数为 2(n-1)2,所以普里姆算法的时间复杂度为O(n2)。

这节,我们队图的引用做了一个抛砖引玉的介绍,主要是普利姆算法,解决 最小生成树问题。下节,我们介绍一下克鲁斯卡尔算法解决最小生成树的问题,和其他的应用。对图做一个总结等等。

时间: 2024-10-03 15:59:06

C#数据结构与算法揭秘14的相关文章

C#数据结构与算法揭秘六

这节我们讨论两种用的蛮多的数据结构--串和数组 首先,老样子,什么是串,这里串不是吃的牛肉串,羊肉串,而是字符串.在应用程序中使用最频繁的类型是字符串.字符串简称串,是一种特殊的线性表,其特殊性在于串中的数据元素是一个个的字符.字符串在计算机的许多方面应用很广.如在汇编和高级语言的编译程序中,源程序和目标程序都是字符串数据.在事务处理程序中,顾客的信息如姓名.地址等及货物的名称.产地和规格等,都被作为字符串来处理.另外,字符串还具有自身的一些特性.因此,把字符串作为一种数据结构来研究.具体情况,

C#数据结构与算法揭秘二

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘二 线性结构_C#教程

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘二_C#教程

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘15

这节,我们主要讨论,一下克鲁斯卡尔算法实现 最小生成树.  克鲁斯卡尔算法的基本思想是:对一个有 n个顶点的无向连通网,将图中的边按权值大小依次选取,若选取的边使生成树不形成回路,则把它加入到树中:若形成回路,则将它舍     弃.如此进行下去,直到树中包含有 n-1条边为止. 以下图 (a)为例说明用克鲁斯卡尔算法求无向连通网最小生成树的过程. 第一步:首先比较网中所有边的权值,找到最小的权值的边(D,E),加入到生成树的边集 TE 中,TE={(D,E)}. 第二步:再比较图中除边(D,E)

C#数据结构与算法揭秘五

这节我们讨论了两种好玩的数据结构,栈和队列. 老样子,什么是栈, 所谓的栈是栈(Stack)是操作限定在表的尾端进行的线性表.表尾由于要进行插入.删除等操作,所以,它具有特殊的含义,把表尾称为栈顶(Top) ,另一端是固定的,叫栈底(Bottom) .当栈中没有数据元素时叫空栈(Empty Stack).这个类似于送饭的饭盒子,上层放的是红烧肉,中层放的水煮鱼,下层放的鸡腿.你要把这些菜取出来,这就引出来了栈的特点先进后出(First in last out).   具体叙述,加下图. 栈通常记

C#数据结构与算法揭秘16

这节我们就用的最多的算法--排序发起重点的讨论.   常见的排序分为冒泡排序,快速排序,直接插入排序 ,希尔排序,基数排序 ,简单选择排序 ,堆排序  等等. 一.冒泡排序 冒泡排序(Bubble Sort)的基本思想是:将相邻的记录的关键码进行比较,若前面记录的关键码大于后面记录的关键码,则将它们交换,否则不交换. 设待排序的顺序表 sqList 中有 n 个记录,冒泡排序要进行 n-1 趟,每趟循环均是从最后两个记录开始. 第 1 趟循环到第 2 个记录的关键码与第 1 个记录的关键码比较后

C#数据结构与算法揭秘19

这节,我们介绍基数排序和归并排序. 一.基数排序 基数排序(Radix Sort)的设计思想与前面介绍的各种排序方法完全不同.前面介绍的排序方法主要是通过关键码的比较和记录的移动这两种操作来实现排序的,而基数排序不需要进行关键码的比较和记录的移动.基数排序是一种借助于多关键码排序的思想,是将单关键码按基数分成多关键码进行排序的方法,是一种分配排序. 下面用一个具体的例子来说明多关键码排序的思想. 一副扑克牌有 52 张牌,可按花色和面值进行分类,其大小关系如下: 花色:梅花<方块<红心<

C#数据结构与算法揭秘九

这节,我们说一说二叉树常见的应用的场景.呵呵.............. 定义一个哈夫曼树,首先,要高清楚什么是哈夫曼树.所谓哈夫曼树是又叫最优二叉树,指的是对于一组具有确定权值的叶子结点的具有最小带权路径长度的二叉树. 介绍哈夫曼树的一些基本概念. (1)路径(Path):从树中的一个结点到另一个结点之间的分支构成这两个结点间的路径. (2)路径长度(Path Length):路径上的分支数. (3)树的路径长度(Path Length of Tree):从树的根结点到每个结点的路径长度之和.