本文结合HBase 0.94.1版本源码,对HBase的Block Cache实现机制进行分析,总结学习其Cache设计的核心思想。
1. 概述
HBase上Regionserver的内存分为两个部分,一部分作为Memstore,主要用来写;另外一部分作为BlockCache,主要用于读。
写请求会先写入Memstore,Regionserver会给每个region提供一个Memstore,当Memstore满64MB以后,会启动 flush刷新到磁盘。当Memstore的总大小超过限制时(heapsize * hbase.regionserver.global.memstore.upperLimit * 0.9),会强行启动flush进程,从最大的Memstore开始flush直到低于限制。
读请求先到Memstore中查数据,查不到就到BlockCache中查,再查不到就会到磁盘上读,并把读的结果放入BlockCache。由于BlockCache采用的是LRU策略,因此BlockCache达到上限(heapsize * hfile.block.cache.size * 0.85)后,会启动淘汰机制,淘汰掉最老的一批数据。
一个Regionserver上有一个BlockCache和N个Memstore,它们的大小之和不能大于等于heapsize * 0.8,否则HBase不能正常启动。
默认配置下,BlockCache为0.2,而Memstore为0.4。在注重读响应时间的应用场景下,可以将 BlockCache设置大些,Memstore设置小些,以加大缓存的命中率。
HBase RegionServer包含三个级别的Block优先级队列:
Single:如果一个Block第一次被访问,则放在这一优先级队列中;
Multi:如果一个Block被多次访问,则从Single队列移到Multi队列中;
InMemory:如果一个Block是inMemory的,则放到这个队列中。
以上将Cache分级思想的好处在于:
首先,通过inMemory类型Cache,可以有选择地将in-memory的column families放到RegionServer内存中,例如Meta元数据信息;
通过区分Single和Multi类型Cache,可以防止由于Scan操作带来的Cache频繁颠簸,将最少使用的Block加入到淘汰算法中。
默认配置下,对于整个BlockCache的内存,又按照以下百分比分配给Single、Multi、InMemory使用:0.25、0.50和0.25。
注意,其中InMemory队列用于保存HBase Meta表元数据信息,因此如果将数据量很大的用户表设置为InMemory的话,可能会导致Meta表缓存失效,进而对整个集群的性能产生影响。
2. 源码分析
下面是对HBase 0.94.1中相关源码(org.apache.hadoop.hbase.io.hfile.LruBlockCache)的分析过程。
2.1加入Block Cache
/** Concurrent map (the cache) */ private final ConcurrentHashMap<BlockCacheKey,CachedBlock> map; /** * Cache the block with the specified name and buffer. * <p> * It is assumed this will NEVER be called on an already cached block. If * that is done, an exception will be thrown. * @param cacheKey block's cache key * @param buf block buffer * @param inMemory if block is in-memory */ public void cacheBlock(BlockCacheKey cacheKey, Cacheable buf, boolean inMemory) { CachedBlock cb = map.get(cacheKey); if(cb != null) { throw new RuntimeException("Cached an already cached block"); } cb = new CachedBlock(cacheKey, buf, count.incrementAndGet(), inMemory); long newSize = updateSizeMetrics(cb, false); map.put(cacheKey, cb); elements.incrementAndGet(); if(newSize > acceptableSize() && !evictionInProgress) { runEviction(); } } /** * Cache the block with the specified name and buffer. * <p> * It is assumed this will NEVER be called on an already cached block. If * that is done, it is assumed that you are reinserting the same exact * block due to a race condition and will update the buffer but not modify * the size of the cache. * @param cacheKey block's cache key * @param buf block buffer */ public void cacheBlock(BlockCacheKey cacheKey, Cacheable buf) { cacheBlock(cacheKey, buf, false); }
以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索hbase
, 队列
, cache
, block
, inmemory
flush机制
hbase block cache、hbase blockcache、hbase scan cache、hbase cache、hbase bucketcache,以便于您获取更多的相关知识。