最小生成树
在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。
例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。
克鲁斯卡尔算法介绍
克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。
具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。
克鲁斯卡尔算法图解
以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。
第1步:将边<E,F>加入R中。
边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
第2步:将边<C,D>加入R中。
上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
第3步:将边<D,E>加入R中。
上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
第4步:将边<B,F>加入R中。
上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
第5步:将边<E,G>加入R中。
上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
第6步:将边<A,B>加入R中。
上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。
此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
克鲁斯卡尔算法分析
根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。
问题一很好解决,采用排序算法进行排序即可。
问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:
在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:
(01) C的终点是F。
(02) D的终点是F。
(03) E的终点是F。
(04) F的终点是F。
关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。因此,接下来,虽然<C,E>是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。
克鲁斯卡尔算法的代码说明
有了前面的算法分析之后,下面我们来查看具体代码。这里选取"邻接矩阵"进行说明,对于"邻接表"实现的图在后面的源码中会给出相应的源码。
1. 基本定义
// 边的结构体 class EData { public: char start; // 边的起点 char end; // 边的终点 int weight; // 边的权重 public: EData(){} EData(char s, char e, int w):start(s),end(e),weight(w){} };
EData是邻接矩阵边对应的结构体。
class MatrixUDG { #define MAX 100 #define INF (~(0x1<<31)) // 无穷大(即0X7FFFFFFF) private: char mVexs[MAX]; // 顶点集合 int mVexNum; // 顶点数 int mEdgNum; // 边数 int mMatrix[MAX][MAX]; // 邻接矩阵 public: // 创建图(自己输入数据) MatrixUDG(); // 创建图(用已提供的矩阵) //MatrixUDG(char vexs[], int vlen, char edges[][2], int elen); MatrixUDG(char vexs[], int vlen, int matrix[][9]); ~MatrixUDG(); // 深度优先搜索遍历图 void DFS(); // 广度优先搜索(类似于树的层次遍历) void BFS(); // prim最小生成树(从start开始生成最小生成树) void prim(int start); // 克鲁斯卡尔(Kruskal)最小生成树 void kruskal(); // 打印矩阵队列图 void print(); private: // 读取一个输入字符 char readChar(); // 返回ch在mMatrix矩阵中的位置 int getPosition(char ch); // 返回顶点v的第一个邻接顶点的索引,失败则返回-1 int firstVertex(int v); // 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1 int nextVertex(int v, int w); // 深度优先搜索遍历图的递归实现 void DFS(int i, int *visited); // 获取图中的边 EData* getEdges(); // 对边按照权值大小进行排序(由小到大) void sortEdges(EData* edges, int elen); // 获取i的终点 int getEnd(int vends[], int i); };
更多精彩内容:http://www.bianceng.cnhttp://www.bianceng.cn/Programming/sjjg/
以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索算法
, 飞思卡尔、赛道中心线
, 最小生成树
, 矩阵 排序
, 顶点
, 克鲁斯卡尔算法
, 生成
, r语言 随机森林
, 求下面题目的e r图
, 设计数字跳过算法
, c++算法图片处理
, c++ c 树
, 加入chekbox问题
最小
kruskal算法c语言、kruskal算法 c、kruskal算法、kruskal算法证明、kruskal算法代码,以便于您获取更多的相关知识。