Kruskal算法(二) C++详解

最小生成树

在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。

例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。

克鲁斯卡尔算法介绍

克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。

基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。

具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。

克鲁斯卡尔算法图解

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

第1步:将边<E,F>加入R中。

边<E,F>的权值最小,因此将它加入到最小生成树结果R中。

第2步:将边<C,D>加入R中。

上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。

第3步:将边<D,E>加入R中。

上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。

第4步:将边<B,F>加入R中。

上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。

第5步:将边<E,G>加入R中。

上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。

第6步:将边<A,B>加入R中。

上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。

此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>

克鲁斯卡尔算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:

问题一 对图的所有边按照权值大小进行排序。

问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。

问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:

在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:

(01) C的终点是F。

(02) D的终点是F。

(03) E的终点是F。

(04) F的终点是F。

关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。因此,接下来,虽然<C,E>是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。

克鲁斯卡尔算法的代码说明

有了前面的算法分析之后,下面我们来查看具体代码。这里选取"邻接矩阵"进行说明,对于"邻接表"实现的图在后面的源码中会给出相应的源码。

1. 基本定义

// 边的结构体
class EData
{
    public:
        char start; // 边的起点
        char end;   // 边的终点
        int weight; // 边的权重

    public:
        EData(){}
        EData(char s, char e, int w):start(s),end(e),weight(w){}
};

EData是邻接矩阵边对应的结构体。

class MatrixUDG {
    #define MAX    100
    #define INF    (~(0x1<<31))        // 无穷大(即0X7FFFFFFF)
    private:
        char mVexs[MAX];    // 顶点集合
        int mVexNum;             // 顶点数
        int mEdgNum;             // 边数
        int mMatrix[MAX][MAX];   // 邻接矩阵

    public:
        // 创建图(自己输入数据)
        MatrixUDG();
        // 创建图(用已提供的矩阵)
        //MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
        MatrixUDG(char vexs[], int vlen, int matrix[][9]);
        ~MatrixUDG();

        // 深度优先搜索遍历图
        void DFS();
        // 广度优先搜索(类似于树的层次遍历)
        void BFS();
        // prim最小生成树(从start开始生成最小生成树)
        void prim(int start);
        // 克鲁斯卡尔(Kruskal)最小生成树
        void kruskal();
        // 打印矩阵队列图
        void print();

    private:
        // 读取一个输入字符
        char readChar();
        // 返回ch在mMatrix矩阵中的位置
        int getPosition(char ch);
        // 返回顶点v的第一个邻接顶点的索引,失败则返回-1
        int firstVertex(int v);
        // 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
        int nextVertex(int v, int w);
        // 深度优先搜索遍历图的递归实现
        void DFS(int i, int *visited);
        // 获取图中的边
        EData* getEdges();
        // 对边按照权值大小进行排序(由小到大)
        void sortEdges(EData* edges, int elen);
        // 获取i的终点
        int getEnd(int vends[], int i);
};

更多精彩内容:http://www.bianceng.cnhttp://www.bianceng.cn/Programming/sjjg/

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索算法
, 飞思卡尔、赛道中心线
, 最小生成树
, 矩阵 排序
, 顶点
, 克鲁斯卡尔算法
, 生成
, r语言 随机森林
, 求下面题目的e r图
, 设计数字跳过算法
, c++算法图片处理
, c++ c 树
, 加入chekbox问题
最小
kruskal算法c语言、kruskal算法 c、kruskal算法、kruskal算法证明、kruskal算法代码,以便于您获取更多的相关知识。

时间: 2024-09-20 17:21:24

Kruskal算法(二) C++详解的相关文章

Floyd算法(二) C++详解

弗洛伊德算法介绍 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离. 假设图G中顶点个数为N,则需要对矩阵S进行N次更新.初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点

Dijkstra算法(二) C++详解

迪杰斯特拉算法介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离). 初始时,S中只有起点s:U中是除s之外的顶点,并且U中

Kruskal算法(三) Java详解

最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树. 例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树. 克鲁斯卡尔算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回

Prim算法(二) C++详解

普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边.从所有uU,v(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 普里姆算法图解 以上图G4为例,来对普里姆进

Javascript数据结构与算法之列表详解

 这篇文章主要介绍了Javascript数据结构与算法之列表详解,本文讲解了列表的抽象数据类型定义.如何实现列表类等内容,需要的朋友可以参考下     前言:在日常生活中,人们经常要使用列表,比如我们有时候要去购物时,为了购物时东西要买全,我们可以在去之前,列下要买的东西,这就要用的列表了,或者我们小时候上学那段时间,每次考完试后,学校都会列出这次考试成绩前十名的同学的排名及成绩单,等等这些都是列表的列子.我们计算机内也在使用列表,那么列表适合使用在什么地方呢?不适合使用在什么地方呢? 适合使用

JavaScript数据结构与算法之栈详解

 这篇文章主要介绍了JavaScript数据结构与算法之栈详解,本文讲解了对栈的操作.对栈的实现实例等内容,需要的朋友可以参考下     在上一篇博客介绍了下列表,列表是最简单的一种结构,但是如果要处理一些比较复杂的结构,列表显得太简陋了,所以我们需要某种和列表类似但是更复杂的数据结构---栈.栈是一种高效的数据结构,因为数据只能在栈顶添加或删除,所以这样操作很快,而且容易实现. 一:对栈的操作. 栈是一种特殊的列表,栈内的元素只能通过列表的一端访问,这一端陈为栈顶.比如餐馆里面洗盘子,只能先洗

JavaScript数据结构和算法之二叉树详解

 这篇文章主要介绍了JavaScript数据结构和算法之二叉树详解,本文讲解了二叉树的概念.二叉树的特点.二叉树节点的定义.查找最大和最小值等内容,需要的朋友可以参考下     二叉树的概念 二叉树(Binary Tree)是n(n>=0)个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根结点和两棵互不相交的.分别称为根结点的左子树和右子树的二叉树组成. 二叉树的特点 每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点.二叉树中每一个节点都是一个对象,每一个数据节点都有三个指针,

Java对数组实现选择排序算法的实例详解_java

一. 算法描述    选择排序:比如在一个长度为N的无序数组中,在第一趟遍历N个数据,找出其中最小的数值与第一个元素交换,第二趟遍历剩下的N-1个数据,找出其中最小的数值与第二个元素交换......第N-1趟遍历剩下的2个数据,找出其中最小的数值与第N-1个元素交换,至此选择排序完成. 以下面5个无序的数据为例: 56 12 80 91 20(文中仅细化了第一趟的选择过程) 第1趟:12 56 80 91 20 第2趟:12 20 80 91 56 第3趟:12 20 56 91 80 第4趟:

Python实现的数据结构与算法之队列详解_python

本文实例讲述了Python实现的数据结构与算法之队列.分享给大家供大家参考.具体分析如下: 一.概述 队列(Queue)是一种先进先出(FIFO)的线性数据结构,插入操作在队尾(rear)进行,删除操作在队首(front)进行. 二.ADT 队列ADT(抽象数据类型)一般提供以下接口: ① Queue() 创建队列 ② enqueue(item) 向队尾插入项 ③ dequeue() 返回队首的项,并从队列中删除该项 ④ empty() 判断队列是否为空 ⑤ size() 返回队列中项的个数 队