linux内存管理--用户空间和内核空间

关于虚拟内存有三点需要注意:

  • 4G的进程地址空间被人为的分为两个部分--用户空间与内核空间。用户空间从0到3G(0xc0000000),内核空间占据3G到4G。用户进程通常情况下只能访问用户空间的虚拟地址,不能访问内核空间的虚拟地址。例外情况只有用户进程进行系统调用(代表用户进程在内核态执行)等时刻可以访问到内核空间。
  • 用户空间对应进程,所以每当进程切换,用户空间就会跟着变化;而内核空间是由内核负责映射,它并不会跟着进程变化,是固定的。内核空间地址有自己对应的页表,用户进程各自有不同的页表。
  • 每个进程的用户空间都是完全独立、互不相干的。

一、4G地址空间解析图

    上图展示了整个进程地址空间的分布,其中4G的地址空间分为两部分,在用户空间内,对应了内存分布的五个段:数据段、代码段、BSS段、堆、栈。在上篇文章中有详细的介绍。

二、虚拟地址空间分配及其与物理内存对应图

                                               这个图示内核用户空间的划分,图中最重要的就是高端内存的映射

   其中kmalloc和vmalloc函数申请的空间对应着不同的区域,同时又不同的含义。

三、物理内存分配图

    这张图中页解释了三者的不同关系,和上篇文章中的内容有相似之处。

伙伴算法:

    一种物理内存分配和回收的方法,物理内存所有空闲页都记录在BUDDY链表中。首选,系统建立一个链表,链表中的每个元素代表一类大小的物理内存,分别为2的0次方、1次方、2次方,个页大小,对应4K、8K、16K的内存,没一类大小的内存又有一个链表,表示目前可以分配的物理内存。例如现在仅存需要分配8K的物理内存,系统首先从8K那个链表中查询有无可分配的内存,若有直接分配;否则查找16K大小的链表,若有,首先将16K一分为二,将其中一个分配给进程,另一个插入8K的链表中,若无,继续查找32K,若有,首先把32K一分为二,其中一个16K大小的内存插入16K链表中,然后另一个16K继续一分为二,将其中一个插入8K的链表中,另一个分配给进程........以此类推。当内存释放时,查看相邻内存有无空闲,若存在两个联系的8K的空闲内存,直接合并成一个16K的内存,插入16K链表中。(伙伴算法用于物理内存分配方案)

SLAB算法:

    是一种对伙伴算的一种补充,对于用户进程的内存分配,伙伴算法已经够好了,但对于内核进程,还需要存在一类很小的数据(字节大小,比如进程描述符、虚拟内存描述符等),若每次给几个字节的数据分配一个4KB的页,实在太浪费,于是就有了SLBA算法,SLAB算法其实就是把一个页用力劈成一小块一小块,然后再分配。

 

时间: 2024-10-11 22:56:00

linux内存管理--用户空间和内核空间的相关文章

linux内存管理-内核用户空间 【转】

转自:http://blog.chinaunix.net/uid-25909619-id-4491362.html 1,linux内存管理中几个重要的结构体和数组 page unsigned long flags 一组标志,也对页框所在的管理区进行编号 atomic_t _count 该页被引用的次数 atomic_t _mapcount 页框中页表项数目,如果没有则为-1 struct list_head lru 管理page忙碌/空闲链表(inactive_list/active_list)

Linux用户空间与内核空间(理解高端内存)

Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中.   Linux内核地址映射模型 x86 CPU采用了段页式地址映射模型.进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存. 段页式机制如下图.   Linux内核地址空间划分 通常32位Linux内核地址空间划分0~3G为用户空间,3~4G为内核空间.注意这里

linux内核空间和用户空间的是怎样区别的,如何交互,如何从用户空间进入内核空间

转载 - linux内核空间和用户空间的是怎样区别的,如何交互,如何从用户空间进入内核空间 作者 digoal 日期 2016-11-20 标签 Linux , 用户空间 , 内核空间 , 用户态 , 内核态 , 进程上下文 , 中断上下文 背景 原文 http://blog.csdn.net/bingqingsuimeng/article/details/7924756 原文 linux驱动程序一般工作在内核空间,但也可以工作在用户空间.下面我们将详细解析,什么是内核空间,什么是用户空间,以及

如何看待Linux操作系统的用户空间和内核空间

作为中央核心处理单元的CPU,除了生产工艺的不断革新进步外,在处理数据和响应速度方面也需要有权衡.稍有微机原理基础的人都知道Intel X86体系的CPU提供了四种特权模式ring0~ring3,其中ring0特权最高,ring3的特权最低,之所以要做这样的区分一个主要目的是保护资源,通俗来讲要保护的资源无非就是"内存.I/O端口以及执行特殊机器指令的能力".任何一个时刻,x86 CPU都是在一定的特权模式下运行.同样,对于ARM体系的CPU 一共有七种运行模式,分别是:用户模式(us

用户空间与内核空间,进程上下文与中断上下文[总结]

1.前言 最近在学习linux内核方面的知识,经常会看到用户空间与内核空间及进程上下文与中断上下文.看着很熟悉,半天又说不出到底是怎么回事,有什么区别.看书过程经常被感觉欺骗,似懂非懂的感觉,很是不爽,今天好好结合书和网上的资料总结一下,加深理解. 2.用户空间与内核空间 我们知道现在操作系统都是采用虚拟存储器,那么对32位操作系统而言,它的寻址空间(虚拟存储空间)为4G(2的32次方).操心系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限.为了保

Linux内核分析(三)----初识linux内存管理子系统

原文:Linux内核分析(三)----初识linux内存管理子系统 Linux内核分析(三) 昨天我们对内核模块进行了简单的分析,今天为了让我们今后的分析没有太多障碍,我们今天先简单的分析一下linux的内存管理子系统,linux的内存管理子系统相当的庞大,所以我们今天只是初识,只要对其进行简单的了解就好了,不会去追究代码,但是在后面我们还会对内存管理子系统进行一次深度的分析. 在分析今天的内容之前,我们先来看出自http://bbs.chinaunix.net/thread-2018659-2

linux内存管理浅析

[地址映射](图:左中) linux内核使用页式内存管理,应用程序给出的内存地址是虚拟地址,它需要经过若干级页表一级一级的变换,才变成真正的物理地址. 想一下,地址映射还是一件很恐怖的事情.当访问一个由虚拟地址表示的内存空间时,需要先经过若干次的内存访问,得到每一级页表中用于转换的页表项(页表是存放在内存里面的),才能完成映射.也就是说,要实现一次内存访问,实际上内存被访问了N+1次(N=页表级数),并且还需要做N次加法运算. 所以,地址映射必须要有硬件支持,mmu(内存管理单元)就是这个硬件.

Linux内存管理原理【转】

转自:http://www.cnblogs.com/zhaoyl/p/3695517.html 本文以32位机器为准,串讲一些内存管理的知识点.   1. 虚拟地址.物理地址.逻辑地址.线性地址 虚拟地址又叫线性地址.linux没有采用分段机制,所以逻辑地址和虚拟地址(线性地址)(在用户态,内核态逻辑地址专指下文说的线性偏移前的地址)是一个概念.物理地址自不必提.内核的虚拟地址和物理地址,大部分只差一个线性偏移量.用户空间的虚拟地址和物理地址则采用了多级页表进行映射,但仍称之为线性地址. 2.

Linux内存管理图解【转】

转自:http://www.360doc.com/content/13/0505/15/12218157_283128759.shtml Linux内存管理图解 2013-05-05  果儿的百科  文章来源   Linux内存管理图解作者:wdy 二.线性地址转物理地址 前面说了Linux中逻辑地址等于线性地址,那么线性地址怎么对应到物理地址呢?这个大家都知道,那就是通过分页机制,具体的说,就是通过页表查找来对应物理地址. 分页是CPU提供的一种机制,Linux只是根据这种机制的规则,利用它实