[家里蹲大学数学杂志]第187期实数集到非负实数集的双射有无穷多个间断点

设 $f:(-\infty,+\infty)\to [0,\infty)$ 是双射, 证明: $f$ 有无穷多个间断点.

证明: 用反证法. 若 $f$ 仅有有穷多个间断点 $x_1<x_2<\cdots<x_n$. 则 $f$ 在 $(x_{i-1},x_i)\ (i=1,\cdots,n+1, x_0=-\infty, x_{n+1}=+\infty)$ 上连续单射. 由此不难推出 $f$ 在 $(x_{i-1},x_i)$ 上严格单调\footnote{否则, $\exists\ t_1<t_2<t_3,\st f(t_1)\leq f(t_2)\geq f(t_3)$ 或 $f(t_1)\geq f(t_2)\leq f(t_3)$.}. 于是 $f(x_{i-1},x_i)=(m_i,M_i)$ 为某个区间 ($m_i=\inf_{(x_{i-1},x_i)}f,\ M_i=\sup_{(x_{i-1},x_i)}f.$). 又由 $f$ 在各 $(x_{i-1},x_i)$ 上的连续性及单射知各 $(m_i,M_i)\ (i=1,\cdots,n+1)$ 互不相交. 注意到 $$\bex [0,\infty)\bs \bigcup_{i=1}^n (m_i,M_i) \eex$$ 至少包含 $n+1$ 个互异的点 ($m_i$ 从小到大排序后, 不妨设 $m_1<m_2<\cdots<m_{n+1}$, 则 $\sed{0},[M_1,m_2],\cdots,[M_n,m_{n+1}]$ 各至少含一点.) $$\bex y_0<y_1<\cdots<y_n. \eex$$ 由 $f$ 是单射知这些 $\sed{y_i}$ 仅能在 $x_j,\ j=1,\cdots,n$ 处取得. 于是 $$\bex \sed{y_0,y_1,\cdots,y_n}\subset \sed{f(x_1),\cdots,f(x_n)}\ra n+1\leq n. \eex$$ 这是一个矛盾. 故有结论. 

时间: 2024-10-01 06:59:38

[家里蹲大学数学杂志]第187期实数集到非负实数集的双射有无穷多个间断点的相关文章

[家里蹲大学数学杂志]第037期泛函分析期末试题

1 (10 分) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X})$ 的充分必要条件是 \[ N(f)=\{ x\in \mathcal{X};\ f(x)=0 \} \] 是 $\mathcal{X}$ 的闭线性子空间. 证明:  参见书 P 82 T 2.1.7(3).   2 (10 分) 设 $\mathcal{H}$ 是 Hilbert 空间, $l$

[家里蹲大学数学杂志]第390期中国科学院大学2014-2015-1微积分期末考试试题参考解答

    1. ($5'$) 利用 $\ve-N$ 语言证明 $$\bex \vlm{n}\frac{2015\cdot 2^n+20\sin n}{n!}=0. \eex$$   证明: 对 $\forall\ \ve>0$, 取 $$\bex N=\sez{\frac{4050}{\ve}}+1, \eex$$ 则当 $n\geq N$ 时, $$\bex \sev{\frac{2015\cdot 2^n+20\sin n}{n!}} \leq \frac{2015\cdot 2\cdots

[家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性

 1. 方程  考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \Div(\varrho\bbu\otimes \bbu) -\mu\lap \bbu -(\lambda+\mu)\n\Div\bbu +\n \varrho^\gamma =\varrho\bbf+\bbg. \ea\right. \eee$$      2. 假设  先作一些初步的假设:   

[家里蹲大学数学杂志]第264期武汉大学2013年数学分析考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录  

[家里蹲大学数学杂志]第265期武汉大学2013年高等代数考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录  

[家里蹲大学数学杂志]第266期中南大学2013年高等代数考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录

[家里蹲大学数学杂志]第048期普林斯顿高等研究所的疯子们

  文心孤竹发帖, 张祖锦整理如下   1 头号大疯子---Albert Einstein(爱因斯坦)   最近在构思写一写普林斯顿高等研究所的疯子们. 本来想先谈谈第一任院长, 可以没找到照片, 所以转而谈里面最大的疯子:爱因斯坦!   大家看看这表情 (下图)够不够头号大疯子的称号.   Albert Einstein(1879年3月14日---1955年4月18日)   当年院长挖他过来, 院长问爱因斯坦你有什么条件?   爱因斯坦说了两个条件:1. 我的助手要跟着来, 2. 年薪3000

[家里蹲大学数学杂志]第047期18 世纪法国数学界的3L

1 Lagrange---78岁  约瑟夫·拉格朗日, 全名约瑟夫·路易斯·拉格朗日 (Joseph-Louis Lagrange 1735~1813) 法国数学家.物理学家.  1736年1月25日生于意大利都灵,  1813年4月10日卒于巴黎. 他在数学.力学和天文学三个学科领域中都有历史性的贡献,  其中尤以数学方面的成就最为突出.  1.1 生平 拉格朗日1736年1月25日生于意大利西北部的都灵. 父亲 约瑟夫·拉格朗日是法国陆军骑兵里的一名军官, 后由于经商破产, 家道中落. 据拉

[家里蹲大学数学杂志]第237期Euler公式的美

1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a.  $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b.  $i$: 虚数单位 $=\sqrt{-1}$ (复变) c.  $\pi$: 圆周率 $\approx 3. 1415926$ (小学就学了) d.  $1$: 自然数的单位 (道生一,一生二,二生三,三生万物---老子关于万物的起源) e.  $0$: 人类最伟大的发现之一 (可以考虑平衡, 欠费等问题了) 这些数学中最重要的一