《数据科学:R语言实现》——1.9 使用替代函数

1.9 使用替代函数

在R语言的一些情况下,我们可以为一个函数调用传值。这就是替代函数的作用。我们会展示替代函数如何工作,以及如何创建自己的替代函数。
准备工作
确保你已经在操作系统中安装了R语言,完成了之前的步骤。
实现步骤
执行下列步骤,创建R中的替代函数。
1.首先,使用函数names给数据指派名字:


实现步骤
在本教程中,我们首先展示了如何使用函数names来为每一个值指派参数名。这种函数方法有点难以理解,但是这就是替代函数的作用:给函数调用传递值。然后我们展示了这个函数以标准形式如何工作。为了实现这一目的,我们把指派箭头(<-)放在函数名后边,并把对象x和取值放在括号中。
接着,我们学习了如何创建替代函数。我们创建了名为erase的函数,它可以从给定的对象中移除某些值。为了调用函数,我们封装向量在函数erase内做替代,并在指派记号的右侧传递数值以便移除。我们还可以在函数名erase后边添加指派箭头来调用替代函数。除了可以移除给定向量对象中的单一值,我们也可以在指派函数的右侧添加向量来移除多个值。
而且,我们可以使用替代函数移除某些位置上的值。这里我们只需要在括号内的对象和值之间添加位置参数。 在最后一步中,我们用刚刚创建的替代函数,把2从列表中的第2个位置移除。
更多技能
正如之前提到的,names<-是一个替代函数。为了查看一个函数是不是替代函数,可以使用函数get:

时间: 2024-12-30 09:38:30

《数据科学:R语言实现》——1.9 使用替代函数的相关文章

《数据科学R语言实践:面向计算推理与问题求解的案例研究法》一一2.3 数据清洗和变量格式化

2.3 数据清洗和变量格式化 本节我们考虑如何将特征矩阵列表menResMat转换为合适的格式以便于数据分析.目前,这些数据值都是字符型,这对于诸如找到参赛者年龄的中位数这样的数据分析是无益的.但是,我们可以利用as.numeric()函数很容易地将年龄转换为数值型.我们需要将整个矩阵都转换为数值型矩阵吗?事实并非如此,比如将参赛者的名字转换为数值型就毫无意义.为此,我们需要创建一个可以允许拥有不同类型变量的数据框.现在我们有6个变量:参赛者姓名.居住地.年龄以及3种类型的时间.正如刚才所说,我

2013年数据分析、数据挖掘、数据科学使用语言排行榜

 最受欢迎的语言仍然是R( KDnuggets 读者中有61%用户在用),python(39%),SQL(37%).SAS仍然稳定在20%之间.增长最快是:Pig/Hive/Hadoop为基础的语言.R.SQL,同时perl, C/C++, 与Unix 在下降.同时我们发现,R与python用户存在一定的重叠. 之前的KDnuggets的调查主要是关注:统计与分析软件,但有时候一个全面与强大的编程语言是需要的.这也是最近一次的KDnuggets调查关注的重点,我们咨询: 在2013年中,什么样的

手把手 | 教你爬下100部电影数据:R语言网页爬取入门指南

前言 网页上的数据和信息正在呈指数级增长.如今我们都使用谷歌作为知识的首要来源--无论是寻找对某地的评论还是了解新的术语.所有这些信息都已经可以从网上轻而易举地获得. 网络中可用数据的增多为数据科学家开辟了可能性的新天地.我非常相信网页爬取是任何一个数据科学家的必备技能.在如今的世界里,我们所需的数据都在互联网上,使用它们唯一受限的是我们对数据的获取能力.有了本文的帮助,您定会克服这个困难. 网上大多数的可用数据并不容易获取.它们以非结构化的形式(HTML格式)表示,并且不能下载.因此,这便需要

《Python数据科学指南》——1.14 返回一个函数

1.14 返回一个函数 在这节里,我们讨论在一个函数里返回另一个函数. 1.14.1 准备工作 我们举一个高中的例子来说明咱们使用返回一个函数的函数.我们要解决的问题是:给定半径,求出不同高度的圆柱体的容积. 请参见:http://www.mathopenref.com/cylindervolume.html. Volume = area height = pi r^2 * h 上面的公式可以准确地求出圆柱体的体积. 1.14.2 操作方法 我们写一个简单的函数来演示在函数中返回函数的概念,此外

一份语言选择指南带你玩数据科学,选出你心中支持的语言

更多深度文章,请关注:https://yq.aliyun.com/cloud 随着大数据时代的到来,网络每天会产生大量的数据,一些行业会对这些数据进行分析并协助企业不断地发展新业务.创建运营模式等,比如电子商务.推荐系统等.那么谁对这些大数据进行分析呢?对应的工作领域是数据科学(Data Science),该领域需要结合先进的统计知识.定量分析能力和编程能力.涉及到编程,大家都会面临一个问题,有太多的编程语言可供选择,那么哪些编程语言适合数据科学领域呢?虽然没有正确答案,但想成为一名成功的数据科

《数据科学实战手册(R+Python)》一第2章 汽车数据的可视化分析(R)

第2章 汽车数据的可视化分析(R) 数据科学实战手册(R+Python) 本章涵盖如下内容. 获取汽车燃料效率数据 为了你的第一个项目准备好R 将汽车燃料效率数据导入R 探索和描述燃料效率数据 进一步分析汽车燃料效率数据 研究汽车的产量以及车型 简介 本书介绍的第一个项目是分析汽车燃料经济数据.我们首先用R对该数据集进行分析.R常常被称为数据科学通用语言,因为它是目前最流行的统计和数据分析语言.在本书前半部分的各个章节中,你将会看到R在数据处理.建模.可视化方面的过人之处,并开发一些有用的脚本,

为何Python攀上数据科学巅峰?调查显示Python超越R

根据KDnuggets 2017年最新调查,Python生态系统已经超过了R,成为了数据分析.数据科学与机器学习的第一大语言.本文对KDnuggets的此项调查结果做了介绍,并补充了一篇文章讲解为何Python能成为数据科学领域最受欢迎的语言. Python vs R:2017 年调查结果 近日,KDnuggets 发起了一项调查,问题是: 你在 2016 年到现在是否使用过 R 语言.Python(以及它们的封装包),或是其他用于数据分析.数据科学与机器学习的工具? 预料之内的是,Python

R语言为Hadoop集群数据统计分析带来革命性变化

R作为开源的数据统计分析语言正潜移默化的在企业中扩大自己的影响力.特有的扩展插件可提供免费扩展,并且允许R语言引擎运行在Hadoop集群之上. R语言是主要用于统计分析.绘图的语言和操作环境.R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发.(也因此称为R)现在由"R开发核心团队"负责开发.R是基于S语言的一个GNU项目,所以也可以当作S语言的一种实现,通常用 S语言编写的代码都可以不作修改的在R环境下运行.R的语法是来自Scheme. R的源

《R语言数据分析与挖掘实战》——导读

前 言 为什么要写这本书 LinkedIn对全球超过3.3亿用户的工作经历和技能进行分析后得出,目前最受关注的25项技能中,对数据挖掘人才的需求排名第一.那么数据挖掘是什么? 数据挖掘是从大量数据(包括文本)中挖掘出隐含的.先前未知的.对决策有潜在价值的关系.模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法.工具和过程.数据挖掘有助于企业发现业务的发展趋势,揭示已知的事实,预测未知的结果,因此"数据挖掘"已成为企业保持竞争力的必要方法. 但跟国外相比,我国

R语言数据挖掘

数据分析与决策技术丛书 R语言数据挖掘 Learning Data Mining with R [哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel) 著 李洪成 许金炜 段力辉 译 图书在版编目(CIP)数据 R语言数据挖掘 / (哈)贝特·麦克哈贝尔(Bater Makhabel)著:李洪成,许金炜,段力辉译. -北京:机械工业出版社,2016.9 (数据分析与决策技术丛书) 书名原文:Learning Data Mining with R ISBN 978-7-111-54769-