hadoop是什么:分布式系统基础架构

hadoop是什么?hadoop能有哪些应用?hadoop和大数据是什么关系?下面我们将围绕这几个问题详细阐述。

hadoop是什么?

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。

用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。

Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。

项目起源

Hadoop由 Apache Software Foundation 公司于 2005 年秋天作为Lucene的子项目Nutch的一部分正式引入。它受到最先由 Google Lab 开发的 Map/Reduce 和 Google File System(GFS) 的启发。

2006 年 3 月份,Map/Reduce 和 Nutch Distributed File System (NDFS) 分别被纳入称为 Hadoop 的项目中。

Hadoop 是最受欢迎的在 Internet 上对搜索关键字进行内容分类的工具,但它也可以解决许多要求极大伸缩性的问题。例如,如果您要 grep 一个 10TB 的巨型文件,会出现什么情况?在传统的系统上,这将需要很长的时间。但是 Hadoop 在设计时就考虑到这些问题,采用并行执行机制,因此能大大提高效率。

发展历程

Hadoop原本来自于谷歌一款名为MapReduce的编程模型包。谷歌的MapReduce框架可以把一个应用程序分解为许多并行计算指令,跨大量的计算节点运行非常巨大的数据集。使用该框架的一个典型例子就是在网络数据上运行的搜索算法。Hadoop 最初只与网页索引有关,迅速发展成为分析大数据的领先平台。

目前有很多公司开始提供基于Hadoop的商业软件、支持、服务以及培训。Cloudera是一家美国的企业软件公司,该公司在2008年开始提供基于Hadoop的软件和服务。GoGrid是一家云计算基础设施公司,在2012年,该公司与Cloudera合作加速了企业采纳基于Hadoop应用的步伐。Dataguise公司是一家数据安全公司,同样在2012年该公司推出了一款针对Hadoop的数据保护和风险评估。

Hadoop应用案例—全球著名企业应用案例

美国国会图书馆是全球最大的图书馆,自1800年设立至今,收藏了超过1.5亿个实体对象,包括书籍、影音、老地图、胶卷等,数字数据量也达到了235TB,但美国eBay拍卖网站,8千万名用户每天产生的数据量就有50TB,5天就相当于1座美国国会图书馆的容量。

在国外,不只eBay这种跨国电子商务业者感受到巨量数据的冲击,其他如美国连锁超市龙头Wal-Mart、发行信用卡的Visa公司等,在台湾如台湾集成电路(台积电)、中华电信等手上拥有大量顾客资料的企业,都纷纷感受到这股如海啸般来袭的Big Data巨量资料浪潮。这样的巨量数据并非是没有价值的数据,其中潜藏了许多使用者亲身经验的第一手原始数据,不少企业更是从中嗅到了商机。

这些企业纷纷向最早面临大数据挑战的搜索引擎业者Google、Yahoo取经,学习处理巨量数据的技术和经验,其中,最受这些企业青睐,用来解决巨量数据难题的技术就是Apache基金会的分布式计算技术Hadoop项目。

Hadoop应用案例1-全球最大超市业者 Wal-Mart

Wal-Mart分析顾客商品搜索行为,找出超越竞争对手的商机

全球最大连锁超市Wal-Mart利用Hadoop来分析顾客搜寻商品的行为,以及用户透过搜索引擎寻找到Wal-Mart网站的关键词,利用这些关键词的分析结果发掘顾客需求,以规画下一季商品的促销策略,甚至打算分析顾客在Facebook、Twitter等社交网站上对商品的讨论,期望能比竞争对手提前一步发现顾客需求。

Wal-Mart虽然十年前就投入在线电子商务,但在线销售的营收远远落后于Amazon。后来,Wal-Mart决定采用Hadoop来分析顾客搜寻商品的行为,以及用户透过搜索引擎寻找到Wal-Mart网站的关键词,利用这些关键词的分析结果发掘顾客需求,以规画下一季商品的促销策略。他们并进一步打算要分析顾客在Facebook、Twitter等社交网站上对商品的讨论,甚至Wal-Mart能比父亲更快知道女儿怀孕的消息,并且主动寄送相关商品的促销邮件,可说是比竞争对手提前一步发现顾客。

Hadoop应用案例2-全球最大拍卖网站 eBay

eBay用Hadoop拆解非结构性巨量数据,降低数据仓储负载

经营拍卖业务的eBay则是用Hadoop来分析买卖双方在网站上的行为。eBay拥有全世界最大的数据仓储系统,每天增加的数据量有50TB,光是储存就是一大挑战,更遑论要分析这些数据,而且更困难的挑战是这些数据报括了结构化的数据和非结构化的数据,如照片、影片、电子邮件、用户的网站浏览Log记录等。

eBay是全球最大的拍卖网站,8千万名用户每天产生的数据量就达到50TB,相当于五天就增加了1座美国国会图书馆的数据量。这些数据报括了结构化的数据,和非结构化的数据如照片、影片、电子邮件、用户的网站浏览Log记录等。eBay正是用Hadoop来解决同时要分析大量结构化数据和非结构化的难题。

eBay分析平台高级总监Oliver Ratzesberger也坦言,大数据分析最大的挑战就是要同时处理结构化以及非结构化的数据。

eBay在5年多前就另外建置了一个软硬件整合的平台Singularity,搭配压缩技术来解决结构化数据和半结构化数据分析问题,3年前更在这个平台整合了Hadoop来处理非结构化数据,透过Hadoop来进行数据预先处理,将大块结构的非结构化数据拆解成小型数据,再放入数据仓储系统的数据模型中分析,来加快分析速度,也减轻对数据仓储系统的分析负载。

Hadoop应用案例3-全球最大信用卡公司 Visa

Visa快速发现可疑交易,1个月分析时间缩短成13分钟

Visa公司则是拥有一个全球最大的付费网络系统VisaNet,作为信用卡付款验证之用。2009年时,每天就要处理1.3亿次授权交易和140万台ATM的联机存取。为了降低信用卡各种诈骗、盗领事件的损失,Visa公司得分析每一笔事务数据,来找出可疑的交易。虽然每笔交易的数据记录只有短短200位,但每天VisaNet要处理全球上亿笔交易,2年累积的资料多达36TB,过去光是要分析5亿个用户账号之间的关联,得等1个月才能得到结果,所以,Visa也在2009年时导入了Hadoop,建置了2套Hadoop丛集(每套不到50个节点),让分析时间从1个月缩短到13分钟,更快速地找出了可疑交易,也能更快对银行提出预警,甚至能及时阻止诈骗交易。

这套被众多企业赖以解决大数据难题的分布式计算技术,并不是一项全新的技术,早在2006年就出现了,而且Hadoop的核心技术原理,更是源自Google打造搜索引擎的关键技术,后来由Yahoo支持的开源开发团队发展成一套Hadoop分布式计算平台,也成为Yahoo内部打造搜索引擎的关键技术。

大数据与Hadoop之间的关系

大数据,一种新兴的数据挖掘技术,它正在让数据处理和分析变得更便宜更快速。大数据技术一旦进入超级计算时代,很快便可应用于普通企业,在遍地开花的过程中,它将改变许多行业业务经营的模式。但是很多人对大数据存在误解,下面就来缕一缕大数据与Hadoop之间的关系。

我们都听过这个预测:到2020年,电子数据存储量将在2009年的基础上增加44倍,达到35万亿GB。根据IDC数据显示,截止到2010年,这个数字已经达到了120万PB,或1.2ZB。如果把所有这些数据都存入DVD光盘,光盘高度将等同于从地球到月球的一个来回也就是大约 480,000英里。

对于那些喜欢杞人忧天的人来说,这是数据存储的末日即将到来的不祥预兆。而对于机会主义者们而言,这就好比是个信息金矿,随着技术的进步,金矿开采会变得越来越容易。

走进大数据,一种新兴的数据挖掘技术,它正在让数据处理和分析变得更便宜更快速。大数据技术一旦进入超级计算时代,很快便可应用于普通企业,在遍地开花的过程中,它将改变许多行业业务经营的模式。

在计算机世界里,大数据被定义为一种使用非传统的数据过滤工具,对大量有序或无序数据集合进行的挖掘过程,它包括但不仅限于分布式计算(Hadoop)。

大数据已经站在了数据存储宣传的风口浪尖,也存在着大量不确定因素,这点上非常像“云”。我们请教了一些分析人士和大数据爱好者,请他们解释一下大数据究竟是什么,以及它对于未来数据存储的意义。

大数据走进历史舞台

适用于企业的大数据已经出现,这在部分程度上要归功于计算能耗的降低以及系统已具备执行多重处理的能力这样一个事实。而且随着主存储器成本的不断下降,和过去相比,公司可以将更多的数据存到存储器中。并且,将多台计算机连到服务器集群也变得更容易了。这三个变化加在一起成就了大数据,IDC 数据库管理分析师Carl Olofson如是说。

“我们不仅要把这些事情做好,还要能承受得起相应的开支”,他说。 “过去的某些超级计算机也具有执行系统多重处理的能力,(这些系统紧密相连,形成了一个集群)但因为要使用专门的硬件,它的成本高达几十万美元甚至更多。”现在我们可以使用普通硬件完成相同的配置。正因为这样,我们能更快更省得处理更多数据。"

大数据技术还没有在有大型数据仓库的公司中得到广泛普及。IDC认为,想让大数据技术得到认可,首先技术本身一定要足够便宜,然后,必须满足IBM称之为3V标准中的2V,即:类型(variety),量(volume)和速度(velocity)。

种类要求指的是待存储数据的类型分为结构化数据和非结构化数据。量是指存储和分析的数据量可以很庞大。 “数据量不只是几百TB,”

Olofson说: “要视具体情况而定,因为速度和时间的关系,有时几百GB可能就算很多了。如果我现在一秒能完成过去要花一小时才能完成的300GB的数据分析,那结果将大为不同。大数据就是这样一种技术,它可以满足这三个要求中的至少两个,并且普通企业也能够部署。”

  关于大数据的三大误解

对于大数据是什么以及大数据能干什么存在很多误会。下面就是有关大数据的三个误解:

1、关系数据库无法大幅增容,因此不能被认为是大数据技术(不对)

2、无需考虑工作负载或具体使用情况,Hadoop或以此类推的任何MapReduce都是大数据的最佳选择。(也不对)

3、图解式管理系统时代已经结束。图解的发展只会成为大数据应用的拦路虎。(可笑的错误)

  大数据与开源的关系

“很多人认为Hadoop和大数据基本上是一个意思。这是错误的,”Olofson说。并解释道: Teradata, MySQL和“智能聚合技术”的某些安装启用都用不到Hadoop,但它们也可以被认为是大数据。

Hadoop是一种用于大数据的应用程序,因为它是建立在MapReduce基础上的,所以引起了极大的关注。(MapReduce是一种用于超级计算的普通方法,之后经过了主要由Google资助的一个项目的优化,因此被简化并变得考究了。) Hadoop是几个紧密关联的Apache项目组成的混合体的主要安装启用程序,其中包括MapReduce环境中的HBase数据库。

为了充分利用Hadoop和类似的先进技术,软件开发商们绞尽脑汁研发出了各种各样的技术,其中很多都是在开源社区里开发出来的。

Olofson 说“他们已经开发出了大量的所谓noSQL数据库,种类之多让人眼花缭乱,其中大部分都是键值配对数据库,能利用多种技术对性能或种类或容量进行优化。”

开源技术还没有得到商业支持。“所以在这方面还需要经过一段时间的发展完善,这一过程可能需要几年。基于这个原因,大数据可能需要一些时日才能在市场上走向成熟”他补充道。

据IDC预计,年内至少有三家商业公司能以某种方式给予Hadoop支持。同时,包括Datameer 在内的几家企业将发布配有Hadoop组件的分析工具,这种工具能帮助企业开发自己的应用程序。Cloudera和Tableau公司的产品清单里已经出现了Hadoop。

hadoop是什么?在阅读完上面的资料后,相信读者对hadoop有了一定了解。

本文作者:佚名

来源:51CTO

时间: 2025-01-25 21:24:54

hadoop是什么:分布式系统基础架构的相关文章

大数据环境下Hadoop基础架构有多重要?

Hadoop和大数据在同一时段开始流行起来,因而成了同义词.但是,二者并不是一回事儿.Hadoop是在集成处理器集群上实施的一种并行程序设计模式,主要用于数据密集型http://www.aliyun.com/zixun/aggregation/13506.html">分布式应用.Hadoop的作用就在于此.早在对大数据的热衷之前,Hadoop就已经存在.但后来Hadoop的意义变了,被当作一种结构用以建立大数据基础架构. Hadoop以谷歌的MapReduce算法为基础,该算法是在集群中分

【深喉解读】豆瓣网的基础架构

[深喉解读]豆瓣网的基础架构 时间:2014-10-31 00:13 来源:InfoQ 作者:佚名 本文根据InfoQ中文站对豆瓣洪强宁(@hongqn)的沟通交流整理而成.洪强宁介绍了豆瓣的架构和组件,并分享了豆瓣基础平台部的一些团队经验.文中截图来自洪强宁在2013年CTO俱乐部中的分享. 嘉宾介绍 洪强宁,豆瓣首席架构师.豆瓣第一位全职员工.清华毕业后,洪强宁一直做嵌入式系统.在2002年开始接触Python语言,从硬件工程师变为软件工程师,对一种语言在计算机底层如何工作有 深入的理解.

百度基础架构部刘炀:开放云——大数据的基石

2014百度世界大数据论坛在北京大饭店举行,百度基础架构部高级总监刘炀对百度在开放云这个领域的进展情况进行了介绍. 刘炀 以下为百度高级总监刘炀演讲实录 刘炀:各位嘉宾下午好,非常高兴今天有机会在这里给大家汇报一下百度在开放云这个领域的一些进展.大家都知道,今天有几个特别热的词语:创新,互联网,大数据,这些几乎是所有公司今天都在追求的,不管是创新公司还是传统企业,都在追求这样的创新:怎么样跟互联网进行结合,怎么样跟大数据结合,运用大数据来提升整个公司的能力.这也是我们为什么要做开放云的原因. 三

Netflix展示大数据分析基础架构

Netflix资深软件工程师Tom Gianos和Netflix大数据计算工程经理Dan Weeks在2016年度QCon旧金山活动中介绍了Netflix的大数据策略和分析基础架构,此外还概括介绍了他们的数据规模.S3数据仓库,以及他们的大数据大数据联合编排系统(Federated orchestration system)Genie. 为了介绍具体的需求,Weeks解释称,"规模"是Netflix在大数据领域面临的最大挑战.该公司在全球范围内有超过8600万会员,每天通过流播的方式播

企业应该如何在大数据基础架构方面做出选择?

如果询问十家公司他们为了运行大数据负载需要使用怎样的基础架构,那么可能会得到十种不同的答案.现在这个领域当中几乎没有可以遵循的原则,甚至没有可以参考的最佳实践. 不管是从资源还是从专业性方面来说,大数据分析已经成为基础架构领域当中真正的难题.顾名思义,大数据分析工具所针对的数据集合,规模将会非常庞大,并且需要大量的计算.存储和网络资源来满足性能需求.但是这些大数据工具通常是由超大规模企业开发的,这些企业并不存在普通企业需要考虑的同等级安全问题和高可用性问题,而主流IT企业还没有深入了解这些工具,

《数据中心设计与运营实战》——第2章 工作负载和软件基础架构2.1 数据中心VS. 台式机

第2章 工作负载和软件基础架构 仓储式数据中心(WSC)中运行的应用主导了众多系统设计的决策权衡.本章概述了大型互联网服务中软件的显著特征以及一个构建完整计算平台所需要的系统软件和工具.以下是典型WSC部署中不同的软件层的相关术语. 平台层软件:和所有独立服务器都一样的固件.内核.分布式操作系统和函数库,屏蔽掉单一设备的具体硬件,提供基本的服务器级服务. 集群层基础架构:在群集层提供资源管理和服务,并最终成为数据中心级操作系统.比如分布式文件系统.调度器.远程过程调用(RPC)库,以及可以简化数

马宁:联想要做IT基础架构解决方案提供商

4月15日,联想北京研发中心召开ThinkServer服务器媒体沟通会,与会媒体记者体验了一段别样的联想企业级业务之旅.在北研中心内笔者参观了联想诸多企业级产品的测试环节,并与联想服务器营销.研发高层进行了沟通会谈.联想在收购IBM x86服务器业务之后,首次在联想北研中心召开企业级业务媒体沟通会,联想集团事业部成熟行业和企业级产品营销总经理刘征.联想集团办公事业部的企业级产品营销总监马宁.联想集团企业级产品集团服务器产品研发中心高级总监王化冰为媒体记者介绍了联想组织架构调整.企业级市场.研发等

王东临:超融合是革新IT基础架构的重要抓手

在云计算和互联网快速发展的今天,IT基础架构变革时不我待.于是,我们看到诸多的新概念,比如双态IT.超融合.云架构等.而在书生集团创始人兼书生云CEO王东临看来,IT基础架构正在面临八大趋势的影响,那就是云架构.分布式系统取代企业级设备.开源.闪存.软件定义一切.重构软件以释放硬件的性能.CITE(企业级IT消费品化)和超融合. 书生集团创始人兼书生云CEO王东临 "将来烟囱式物理架构都要被淘汰,所有IT基础架构都将升级为云架构."王东临如是说,云计算的发展也将让传统企业的IT架构重新

怎样在初创公司里搭建稳定、可访问的数据基础架构

数据是创立Asana的核心部分,并且每一个团队都依赖他们自己的方式.我们的负责增长的团队依靠事件数据来分析试验结果(对比试验). 我们做很多快速的实验--通常会有很多实验一起跑-- 让这些互相影响的作用和其他关键度量引导我们需要放弃什么和投入什么 项目经理,设计师和产品工程师通过分析使用数据来发现不可避免的妥协,比如简洁性对强大性. 通过这种方法,我们可以知道什么样的新产品方向能够释放出最多的潜力.市场部门需要明确在他们的竞争力中的哪个部分能够驱使新用户到Asana.财会部门需要非常可靠的关于总