Spark修炼之道(进阶篇)——Spark入门到精通:第十节 Spark SQL案例实战(一)

作者:周志湖

放假了,终于能抽出时间更新博客了…….

1. 获取数据

本文通过将github上的Spark项目git日志作为数据,对SparkSQL的内容进行详细介绍
数据获取命令如下:

[root@master spark]# git log  --pretty=format:'{"commit":"%H","author":"%an","author_email":"%ae","date":"%ad","message":"%f"}' > sparktest.json

格式化日志内容输出如下:

[root@master spark]# head -1 sparktest.json
{"commit":"30b706b7b36482921ec04145a0121ca147984fa8","author":"Josh Rosen","author_email":"joshrosen@databricks.com","date":"Fri Nov 6 18:17:34 2015 -0800","message":"SPARK-11389-CORE-Add-support-for-off-heap-memory-to-MemoryManager"}

然后使用命令将sparktest.json文件上传到HDFS上


[root@master spark]#hadoop dfs -put sparktest.json /data/

2. 创建DataFrame

使用数据创建DataFrame

scala> val df = sqlContext.read.json("/data/sparktest.json")
16/02/05 09:59:56 INFO json.JSONRelation: Listing hdfs://ns1/data/sparktest.json on driver

查看其模式:

scala> df.printSchema()
root
 |-- author: string (nullable = true)
 |-- author_email: string (nullable = true)
 |-- commit: string (nullable = true)
 |-- date: string (nullable = true)
 |-- message: string (nullable = true)

3. DataFrame方法实战

(1)显式前两行数据

scala> df.show(2)

+----------------+--------------------+--------------------+--------------------+--------------------+
|          author|        author_email|              commit|                date|             message|
+----------------+--------------------+--------------------+--------------------+--------------------+
|      Josh Rosen|joshrosen@databri...|30b706b7b36482921...|Fri Nov 6 18:17:3...|SPARK-11389-CORE-...|
|Michael Armbrust|michael@databrick...|105732dcc6b651b97...|Fri Nov 6 17:22:3...|HOTFIX-Fix-python...|
+----------------+--------------------+--------------------+--------------------+--------------------+

(2)计算总提交次数


scala> df.count
res4: Long = 13507
下图给出的是我github上的commits次数,可以看到,其结束是一致的

(3)按提交次数进行降序排序

scala>df.groupBy("author").count.sort($"count".desc).show

+--------------------+-----+
|              author|count|
+--------------------+-----+
|       Matei Zaharia| 1590|
|         Reynold Xin| 1071|
|     Patrick Wendell|  857|
|       Tathagata Das|  416|
|          Josh Rosen|  348|
|  Mosharaf Chowdhury|  290|
|           Andrew Or|  287|
|       Xiangrui Meng|  285|
|          Davies Liu|  281|
|          Ankur Dave|  265|
|          Cheng Lian|  251|
|    Michael Armbrust|  243|
|             zsxwing|  200|
|           Sean Owen|  197|
|     Prashant Sharma|  186|
|  Joseph E. Gonzalez|  185|
|            Yin Huai|  177|
|Shivaram Venkatar...|  173|
|      Aaron Davidson|  164|
|      Marcelo Vanzin|  142|
+--------------------+-----+
only showing top 20 rows

4. DataFrame注册成临时表使用实战

使用下列语句将DataFrame注册成表

scala> val commitLog=df.registerTempTable("commitlog")

(1)显示前2行数据

scala> sqlContext.sql("SELECT * FROM commitlog").show(2)
+----------------+--------------------+--------------------+--------------------+--------------------+
|          author|        author_email|              commit|                date|             message|
+----------------+--------------------+--------------------+--------------------+--------------------+
|      Josh Rosen|joshrosen@databri...|30b706b7b36482921...|Fri Nov 6 18:17:3...|SPARK-11389-CORE-...|
|Michael Armbrust|michael@databrick...|105732dcc6b651b97...|Fri Nov 6 17:22:3...|HOTFIX-Fix-python...|
+----------------+--------------------+--------------------+--------------------+--------------------+

(2)计算总提交次数

scala> sqlContext.sql("SELECT count(*) as TotalCommitNumber  FROM commitlog").show
+-----------------+
|TotalCommitNumber|
+-----------------+
|            13507|
+-----------------+

(3)按提交次数进行降序排序

scala> sqlContext.sql("SELECT author,count(*) as CountNumber  FROM commitlog GROUP BY author ORDER BY CountNumber DESC").show

+--------------------+-----------+
|              author|CountNumber|
+--------------------+-----------+
|       Matei Zaharia|       1590|
|         Reynold Xin|       1071|
|     Patrick Wendell|        857|
|       Tathagata Das|        416|
|          Josh Rosen|        348|
|  Mosharaf Chowdhury|        290|
|           Andrew Or|        287|
|       Xiangrui Meng|        285|
|          Davies Liu|        281|
|          Ankur Dave|        265|
|          Cheng Lian|        251|
|    Michael Armbrust|        243|
|             zsxwing|        200|
|           Sean Owen|        197|
|     Prashant Sharma|        186|
|  Joseph E. Gonzalez|        185|
|            Yin Huai|        177|
|Shivaram Venkatar...|        173|
|      Aaron Davidson|        164|
|      Marcelo Vanzin|        142|
+--------------------+-----------+

更多复杂的玩法,大家可以自己去尝试,这里给出的只是DataFrame方法与临时表SQL语句的用法差异,以便于有整体的认知。

时间: 2025-01-03 08:11:01

Spark修炼之道(进阶篇)——Spark入门到精通:第十节 Spark SQL案例实战(一)的相关文章

Spark修炼之道(进阶篇)——Spark入门到精通:第一节 Spark 1.5.0集群搭建

作者:周志湖 网名:摇摆少年梦 微信号:zhouzhihubeyond 本节主要内容 操作系统环境准备 Hadoop 2.4.1集群搭建 Spark 1.5.0 集群部署 注:在利用CentOS 6.5操作系统安装spark 1.5集群过程中,本人发现Hadoop 2.4.1集群可以顺利搭建,但在Spark 1.5.0集群启动时出现了问题(可能原因是64位操作系统原因,源码需要重新编译,但本人没经过测试),经本人测试在ubuntu 10.04 操作系统上可以顺利成功搭建.大家可以利用CentOS

Spark修炼之道(进阶篇)——Spark入门到精通:第九节 Spark SQL运行流程解析

1.整体运行流程 使用下列代码对SparkSQL流程进行分析,让大家明白LogicalPlan的几种状态,理解SparkSQL整体执行流程 // sc is an existing SparkContext. val sqlContext = new org.apache.spark.sql.SQLContext(sc) // this is used to implicitly convert an RDD to a DataFrame. import sqlContext.implicits

Scala入门到精通——第二十节 类型参数(二)

本节主要内容 Ordering与Ordered特质 上下文界定(Context Bound) 多重界定 类型约束 1. Ordering与Ordered特质 在介绍上下文界定之前,我们对scala中的Ordering与Ordered之间的关联与区别进行讲解,先看Ordering.Ordered的类继承层次体系: 通过上面两个图可以看到,Ordering混入了java中的Comparator接口,而Ordered混入了java的Comparable接口,我们知道java中的Comparator是一

Scala入门到精通——第十节 Scala类层次结构、Traits初步

本节主要内容 Scala类层次结构总览 Scala中原生类型的实现方式解析 Nothing.Null类型解析 Traits简介 Traits几种不同使用方式 1 Scala类层次结构 Scala中的类层次结构图如下: 来源:Programming in Scala 从上面的类层次结构图中可以看到,处于继承层次最顶层的是Any类,它是scala继承的根类,scala中所有的类都是它的子类 Any类中定义了下面几个方法: //==与!=被声明为final,它们不能被子类重写 final def ==

Spark修炼之道系列教程预告

课程内容 Spark修炼之道(基础篇)--Linux基础(15讲).Akka分布式编程(8讲) Spark修炼之道(进阶篇)--Spark入门到精通(30讲) Spark修炼之道(实战篇)--Spark应用开发实战篇(20讲) Spark修炼之道(高级篇)--Spark源码解析(50讲) 部分内容会在实际编写时动态调整,或补充.或删除. Spark修炼之道(基础篇)--Linux大数据开发基础(15讲). Linux大数据开发基础--第一节:Ubuntu Linux安装与介绍 Linux大数据开

Spark修炼之道——Spark学习路线、课程大纲

课程内容 Spark修炼之道(基础篇)--Linux基础(15讲).Akka分布式编程(8讲) Spark修炼之道(进阶篇)--Spark入门到精通(30讲) Spark修炼之道(实战篇)--Spark应用开发实战篇(20讲) Spark修炼之道(高级篇)--Spark源码解析(50讲) 部分内容会在实际编写时动态调整,或补充.或删除. Spark修炼之道(基础篇)--Linux大数据开发基础(15讲). Linux大数据开发基础--第一节:Ubuntu Linux安装与介绍 Linux大数据开

Spark修炼之道(进阶篇)——Spark入门到精通:第十节 Spark Streaming(一)

本节主要内容 本节部分内容来自官方文档:http://spark.apache.org/docs/latest/streaming-programming-guide.html#mllib-operations Spark流式计算简介 Spark Streaming相关核心类 入门案例 1. Spark流式计算简介 Hadoop的MapReduce及Spark SQL等只能进行离线计算,无法满足实时性要求较高的业务需求,例如实时推荐.实时网站性能分析等,流式计算可以解决这些问题.目前有三种比较常

Spark修炼之道(进阶篇)——Spark入门到精通:第十二节 Spark Streaming—— DStream Window操作

作者:周志湖 微信号:zhouzhihubeyond 本节主要内容 Window Operation 入门案例 1. Window Operation Spark Streaming提供窗口操作(Window Operation),如下图所示: 上图中,红色实线表示窗口当前的滑动位置,虚线表示前一次窗口位置,窗口每滑动一次,落在该窗口中的RDD被一起同时处理,生成一个窗口DStream(windowed DStream),窗口操作需要设置两个参数: (1)窗口长度(window length),

Spark修炼之道(进阶篇)——Spark入门到精通:第八节 Spark SQL与DataFrame(一)

本节主要内宾 Spark SQL简介 DataFrame 1. Spark SQL简介 Spark SQL是Spark的五大核心模块之一,用于在Spark平台之上处理结构化数据,利用Spark SQL可以构建大数据平台上的数据仓库,它具有如下特点: (1)能够无缝地将SQL语句集成到Spark应用程序当中 (2)统一的数据访问方式 DataFrames and SQL provide a common way to access a variety of data sources, includ

Spark修炼之道(进阶篇)——Spark入门到精通:第三节 Spark Intellij IDEA开发环境搭建

作者:周志湖 网名:摇摆少年梦 微信号:zhouzhihubeyond 本节主要内容 Intellij IDEA 14.1.4开发环境配置 Spark应用程序开发 1. Intellij IDEA 14.1.4开发环境配置 Intellij IDEA 功能十分强大,能够开发JAVA.Scala等相关应用程序,在依赖管理 智能提示等方面做到了极致,大家可以到:http://www.jetbrains.com/idea/download/下载,目前有两种:Ultimate Edition Free