Java中Clojure如何抽象并发性和共享状态

在所有 Java 下一代语言中,Clojure 拥有最激进的并发性机制和功能。Groovy 和 ">Scala 都为并发性提供了改善的抽象和语法糖的一种组合,而 Clojure 坚持了它始终在 JVM 上提供独一无二的行为的强硬立场。在本期 Java 下一代 中,我将介绍 Clojure 中众多并发性选项的一部分。首先是为 Clojure 中易变的引用提供支撑的基础抽象:epochal 时间模型。

Epochal 事件模型

或许 Clojure 与其他语言最显著的区别与易变的状态和值 密切相关。Clojure 中的值 可以是任何用户感兴趣的数据:数字 42、映射结构 {:first-name "Neal :last-name "Ford"} 或某些更大型的数据结构,比如 Wikipedia。基本来讲,Clojure 语言对待所有值就像其他语言对待数字一样。数字 42 是一个值,您不能重新定义它。但可对该值应用一个函数,返回另一个值。例如,(inc 42) 返回值 43。

在 Java 和其他基于 C 的语言中,变量 同时持有身份和值,这是让并发性在 Java 语言中如此难以实现的因素之一。语言设计人员在线程抽象之前创建了变量抽象,变量的设计没有考虑为并发性增加的复杂性。因为 Java 中的变量假设只有单个线程,所以在多线程环境中,需要像同步块这样麻烦的机制来保护变量。Clojure 的设计人员 Rich Hickey 让交织(complect) 这个古老的词汇恢复了活力(交织这个词被定义为 “缠绕或编织”),用于描述 Java 变量中的设计缺陷。

Clojure 将值 与引用 分开。在 Clojure 世界观中,数据以一系列不变的值的形式存在,如图 1 所示。

图 1. epochal 时间模型中的值

图 1 显示,像 v1 这样的独立的值表示 42 或 Wikipedia 等数据,使用方框表示。与值独立的是函数,它们获取值作为参数并生成新值,如图 2 所示。

图 2. epochal 时间模型中的函数

图 2 将函数显示为与值独立的圆圈。函数调用会生成新值,使用值作为参数和结果。一连串的值保存在一个引用 中,它表示变量的身份。随着时间的推移,此身份可能指向不同的值(由于函数应用),但身份从不更改,如图 3 中的虚线所示。

图 3. epochal 时间模型中的引用

在图 3 中,整幅图表示一个引用随时间的变化。虚线是一个引用,它持有其生存期内的一连串的值。可在某个时刻向引用分配一个新的不变值;引用指向的目标可更改,而无需更改该引用。

在引用的生存期中,一个或多个观察者(其他程序、用户界面、任何对该引用持有的值感兴趣的对象)将解除引用它,查看它的值(或许还执行某种操作),如图 4 所示。

图 4. 解除引用

在图 4 中,观察者(有两种楔形表示)可持有引用本身(由来自虚线引用的箭头表示),或者可解除引用它,检索它的值(由来自该值的箭头表示)。例如,您可能有一个函数,它以一个传递给您的数据库连接作为参数,您进而将该参数传递给一个更低级的持久性函数。在此情况下,您持有该引用,但从不需要它的值;持久性函数可能会解除引用它,以获取它的值来连接到一个数据库。

请注意,图 4 中的观察者不会进行协调 — 它们完全不依赖彼此。此结构使得 Clojure 运行时能够在整个语言中保证了一些有用的属性,比如决不允许读取程序阻塞,这使得读取操作变得非常高效。如果您希望更改一个引用(也就是说,将它指向一个不同的值),可使用 Clojure 的一个 API 来执行更新,这会采用 epochal 时间模型。

epochal 时间模型为整个 Clojure 中的引用更新提供了支持。因为运行时控制所有更新,所以它可防御线程冲突,开发人员在不太复杂的语言中必须争用线程。

Clojure 拥有广泛的方式来更新引用,具体依赖于您想要何种特征。接下来,我将讨论两种方式:简单的原子 和复杂的软件事务内存。

原子

Clojure 中的原子 是对数据一个原子部分的引用,无论该部分有多大。您创建一个 atom 并初始化它,然后应用一个突变函数。这里,我为一个原子创建了一个称为 counter 的引用,将它初始化为 0。如果我希望将引用更新到一个新值,我可使用 (swap!) 这样的函数,它原子化地为该引用换入一个新值:

(def counter (atom 0))(swap! counter + 10)

根据 Clojure 中的惯例,突变函数的名称以一个感叹号结尾。(swap!) 函数接受该引用、要应用的函数(在本例中为 + 运算符)和任何其他参数。

Clojure 原子持有任何大小的数据,而不只是原始值。例如,我可围绕一个 person 映射创建一个原子引用,并使用 map 函数更新它。使用(create-person) 函数(未显示),我在一个原子中创建一个 person 记录,然后使用 (swap!) 和 (assoc ) 更新该引用,这会更新一个映射关联:

(def person (atom (create-person)))(swap! person assoc :name "John")

原子还会通过 (compare-and-set!) 函数,使用原子实现一个通用的乐观锁定模式:

(compare-and-set! a 0 42)=> false(compare-and-set! a 1 7)= true

(compare-and-set!) 函数接受 3 个参数:原子引用、想要的现有值和新值。如果原子的值与想要的值不匹配,更新不会发生,函数会返回 false。

Clojure 有各种各样的机制都遵循引用语义。例如,promise(是一种不同的引用)承诺在以后提供一个值。这里,我创建对一个名为 number-later的 promise 的引用。此代码不会生成任何值,就像它对最终会这么做的承诺一样。调用 (deliver ) 函数时,一个值会绑定到 number-later:

(def number-later (promise))(deliver number-later 42)

尽管此示例使用了 Clojure 中的 futures 库,但引用语义与简单的原子保持一致。

软件事务内存

没有其他任何 Clojure 特性获得了比软件事务内存 (STM) 更多的关注,这是 Clojure 以 Java 语言封装垃圾收集的方式来封装并发性的内部机制。换句话说,您可编写高性能的多线程 Clojure 应用程序,而从不考虑同步块、死锁、线程库等。

Clojure 封装并发性的方式是,通过 STM 控制引用的所有突变。更新一个引用(惟一的易变抽象)时,必须在一个事务中执行,以使 Clojure 运行时能够管理更新。考虑一个经典的银行问题:向一个帐户中存款,同时向另一个帐户贷款。清单 1 显示了一个简单的 Clojure 解决方案。

清单 1. 银行交易

(defn transfer [from to amount] (dosync (alter from - amount) (alter to + amount)))

在 清单 1 中,我定义了一个 (transfer ) 函数,它接受 3 个参数:from 和 to 帐户 — 二者都是引用 — 以及金额。我从 from 帐户中减去该金额,将它添加到 to 帐户中,但此操作必须与 (dosync ) 事务一起发生。如果我在事务块的外部尝试一个 (alter ) 调用,更新会失败并抛出一个IllegalStateException:

(alter from - 1)=>> IllegalStateException No transaction running

在 清单 1 中,(alter ) 函数仍然遵守 epochal 时间模型,但使用 STM 来确保两个操作都完成或都未完成。为此,STM — 非常像一个数据库服务器 — 临时重试阻塞的操作,所以您的更新函数在更新之外不应有任何副作用。例如,如果您的函数还写入一个日志,由于不断重试,您可能会看到多个日志条目。STM 还会随未解决事务的时长增长而逐步提高它们的优先级,显示数据库引擎中的其他更常见的行为。

STM 的使用很简单,但底层机制很复杂。从名称可以看出,STM 是一个事务系统。STM 实现了 ACID 事务标准的 ACI 部分:所有更改都是原子性、一致 和隔离的。ACID 的耐久 部分在这里不适用,因为 STM 在内存中操作。很少看到将像 STM 这样的高性能机制内置于一种语言的核心中;Haskell是惟一认真实现了 STM 的另一种主流语言 — 不要奇怪,因为 Haskell(像 Clojure 一样)非常喜欢不变性。(.NET 生态系统曾尝试构建一个 STM 管理器,但最终放弃了,因为处理事务和不变性变得太复杂了。)

缩减程序(reducer)和数字分类

如果不讨论 上一期 中的数字分类器问题的替代实现,并行性介绍都是不完整的。清单 2 显示了一个没有并行性的原子版本。

清单 2. Clojure 中的数字分类器

(defn classify [num] (let [facts (->> (range 1 (inc num)) (filter #(= 0 (rem num %)))) sum (reduce + facts) aliquot-sum (- sum num)] (cond (= aliquot-sum num) :perfect (> aliquot-sum num) :abundant (< aliquot-sum num) :deficient)))

清单 2 中的分类器版本浓缩为单个函数,它返回一个 Clojure 关键字(由一个前导冒号表示)。(let ) 块使我能够建立局部绑定。为了确定因数,我使用 thread-last 运算符来过滤数字范围,让代码更有序。sum 和 aliquot-sum 的计算都很简单;一个数字的真因数和 是它的因数之和减去它本身,这使我的比较代码更简单。该函数的最后一行是 (cond ) 语句,它针对计算的值来计算 aliquot-sum,返回合适的关键字枚举。此代码的一个有趣之处是,我以前的实现中的方法在这个版本中折叠为简单的赋值。在计算足够简单和简洁时,您通常需要创建的函数更少。

Clojure 包含一个称为 缩减程序 的强大的并发性库。(有关缩减程序库的开发过程的解释 — 包括为利用最新的 JVM 原生的 fork/join 工具而进行的优化 — 是一个吸引人的故事。)缩减程序库提供了常见运算的就地替换,比如 map、filter 和 reduce,使这些预算能够自动利用多个线程。例如,将标准的 (map ) 替换为 (r/map )(r/ 是缩减程序的命名空间),会导致您的映射操作自动被运行时并行化。

清单 3 给出了一个利用了缩减程序的数字分类器版本。

清单 3. 使用了缩减程序库的分类器

(ns pperfect.core (:require [clojure.core.reducers :as r]))(defn classify-with-reducer [num] (let [facts (->> (range 1 (inc num)) (r/filter #(= 0 (rem num %)))) sum (r/reduce + facts) aliquot-sum (- sum num)] (cond (= aliquot-sum num) :perfect (> aliquot-sum num) :abundant (< aliquot-sum num) :deficient)))

必须仔细观察,才能找出 清单 2 和 清单 3 之间的区别。惟一的区别是引入了缩减程序命名空间和别名,向 filter 和 reduce 都添加了 r/。借助这些细微的更改,我的过滤和缩减操作现在可自动使用多个线程。

结束语

本期介绍了 Clojure 中的一些并发性选项,这是一个内容丰富的主题区域。我讨论了核心的底层抽象 — epochal 时间模型 — 展示了原子和 STM 如何使用此概念。我还演示了一种简单的就地替换库,它使现有的应用程序能够使用高级并发性功能,比如 fork/join。

Clojure 中还有其他许多并发性选项,包括更简单的并行函数,比如 pmap (parallel map)。Clojure 还包含代理 — 绑定到一个池中的线程上的自主工作者(由系统或用户定义),与 Scala 的 actor 大体相似。Clojure 还融入了 Java 语言中所有现在的并发性进步,使它能轻松地使用 fork/join 等现代库。

或许比任何其他 Clojure 特性都更明显,并发性工具显示了 Clojure 生态系统的工程设计重点:充分利用语言特性来构建强大的抽象。Clojure 没有尝试创建一个 Lispy 版的 Java。设计者从根本上重新思考了核心基础设施和实现。

时间: 2024-08-04 00:43:19

Java中Clojure如何抽象并发性和共享状态的相关文章

了解Java 8功能如何让并发性编程变得更容易

在期待已久的 Java 8 版本中,并发性方面已实现了许多改进,其中包括在java.util.concurrent 层级中增加新的类和强大的新并行流 功能.设计流的目的是与lambda 表达式 共同使用,Java 8 的这项增强也使得日常编程的其他很多方面变得更加简便.(参见介绍 Java 8 语言的 指南文章,了解对于 lambda 表达式的介绍及相关 interface改动.) 本文首先介绍了新的 CompletableFuture 类如何更好地协调异步操作.接下来,我将介绍如何使用并行流(

怎样在java中定义一个抽象属性

Abstract关键字通常被用于类和方法,用来把某些行为的实现委托给子类.由于Java不支持抽象属性,如果你试图将类属性标记为抽象,将会得到一个编译时错误. 在本教程中,我们将介绍两种定义抽象属性的方法,这些抽象属性可以由子类进行设置,而且不使用Abstract 关键字. 实用案例 假设我们想要实现一个记录事务的日志模块,用来记录特定事务的信息.我们希望这个模块是抽象的,这样我们可以实现不同的日志记录方式,例如:记录到文件或数据库中. 我们的引擎使用预定义的分隔符来连接日志中的信息,并存储在一个

浅析Java中CopyOnWrite容器的并发机制

Copy-On-Write简称COW,是一种用于程序设计中的优化策略.其基本思路是,从一开始大家都在共享同一个内容,当某个人想要修改这个内容的时候,才会真正把内容Copy出去形成一个新的内容然后再改,这是一种延时懒惰策略.从JDK1.5开始Java并发包里提供了两个使用CopyOnWrite机制实现的并发容器,它们是CopyOnWriteArrayList和CopyOnWriteArraySet.CopyOnWrite容器非常有用,可以在非常多的并发场景中使用到. 什么是CopyOnWrite容

Java中的状态模式实例教程

原文链接 作者:Pankaj Kumar 译者:f0tlo <1357654289@qq.com> 状态模式是一种行为设计模式.适用于当对象的内在状态改变它自身的行为时. 如果想基于对象的状态来改变自身的行为,通常利用对象的状态变量及if-else条件子句来扮演针对对象的不同行为.状态模式Context(环境)和State(状态)分离的方式既保证状态与行为的联动变化,又使得这种变化是条理明晰且松耦合的. Context是包含了状态引用的类,此引用指向一个状态的具体实现.并且帮助把对状态的请求委

Java中的final

这几天,在网上找了一些关于final的知识,当然并不全面,有的一时也没有很好的理解,先收集起来,理理思路,把不懂的画出来,以便更好地学习-- Java中的final关键字通常的指的是"这是无法改变的".它可能被做为三种的修饰词.------数据(基本类型,对象或者数组),方法(类方法.实例方法),类. <1>final应用于类 如果类被声明为final,则表示类不能被继承,也就是说不能有子类.因为不能有子类,所以final类不能被声明为abstract抽象类.所以final

了解Java语言中的并发性和Scala提供的附加选项

本文是一个有关 JVM 并发性的新系列第一篇,将介绍 Java 7 中最新的并发性编程功能,还将介绍一些 Scala 增强.本文还为帮助您理解 Java 8 中的并发性特性扫清了障碍. 处理器速度数十年来一直持续快速发展,并在世纪交替之际走到了终点.从那时起,处理器制造商更多地是通过增加核心来提高芯片性能,而不再通过增加时钟速率来提高芯片性能.多核系统现在成为了从手机到企业服务器等所有设备的标准,而这种趋势可能继续并有所加速.开发人员越来越需要在他们的应用程序代码中支持多个核心,这样才能满足性能

《Java安全编码标准》一1.7 并发性、可见性和内存

1.7 并发性.可见性和内存 可以在不同线程之间共享的内存称为共享内存(shared memory)或内存堆(heap memory).本节使用变量(variable)这个名词来代表字段和数组元素[JLS2005].在不同的线程中共享的变量称为共享变量.所有的实例字段.静态字段以及数组元素作为共享变量存储在共享内存中.局部变量.形式方法参数以及异常例程参数是从来不能在线程之间共享的,不会受到内存模型的 影响. 在现代多处理器共享内存的架构下,每个处理器有一个或多个层次的缓存,会定期地与主存储器进

JVM 并发性: Java 和 Scala 并发性基础

Java 并发性支持 在 Java 平台诞生之初,并发性支持就是它的一个特性,线程和同步的实现为它提供了超越其他竞争语言的优势.Scala 基于 Java 并在 JVM 上运行,能够直接访问所有 Java 运行时(包括所有并发性支持).所以在分析 Scala 特性之前,我首先会快速回顾一下 Java 语言已经提供的功能. Java 线程基础 在 Java 编程过程中创建和使用线程非常容易.它们由 java.lang.Thread 类表示,线程要执行的代码为 java.lang.Runnable 

推荐阅读Java并发性领域编程最值得一读的力作《JAVA并发编程实践》

我的第一次之给<JAVA并发编程实践>写推荐序英文书名:Java Concurrency in Practice 中文书名:JAVA并发编程实践 这是一本入围17届Jolt大奖的书,虽然最终他没有获奖,但是这只是与政治有关的.:) 推荐序原文如下: http://book.csdn.net/bookfiles/398/10039814644.shtml 在汗牛充栋的 Java 图书堆中,关于并发性的书籍却相当稀少,然而这本书的出现,将极大地弥补了这一方面的空缺.即使并发性编程还没进入到您的 J