《Linux高性能服务器编程》——2.5 IP转发

2.5 IP转发

前文提到,不是发送给本机的IP数据报将由数据报转发子模块来处理。路由器都能执行数据报的转发操作,而主机一般只发送和接收数据报,这是因为主机上/proc/sys/net/ipv4/ip_forward内核参数默认被设置为0。我们可以通过修改它来使能主机的数据报转发功能(在测试机器Kongming20上以root身份执行):

# echo 1 > /proc/sys/net/ipv4/ip_forward

对于允许IP数据报转发的系统(主机或路由器),数据报转发子模块将对期望转发的数据报执行如下操作:

1)检查数据报头部的TTL值。如果TTL值已经是0,则丢弃该数据报。

2)查看数据报头部的严格源路由选择选项。如果该选项被设置,则检测数据报的目标IP地址是否是本机的某个IP地址。如果不是,则发送一个ICMP源站选路失败报文给发送端。

3)如果有必要,则给源端发送一个ICMP重定向报文,以告诉它一个更合理的下一跳路由器。

4)将TTL值减1。

5)处理IP头部选项。

6)如果有必要,则执行IP分片操作。

时间: 2024-09-12 04:42:39

《Linux高性能服务器编程》——2.5 IP转发的相关文章

《Linux高性能服务器编程》——导读

前 言 为什么要写这本书 目前国内计算机书籍的一个明显弊病就是内容宽泛而空洞.很多书籍长篇大论,恨不得囊括所有最新的技术,但连一个最基本的技术细节也无法解释清楚.有些书籍给读者展现的是网络上随处可见的知识,基本没有自己的观点,甚至连一点自己的总结都没有.反观大师们的经典书籍,整本书只专注于一个问题,而且对每个技术细节的描述都是精雕细琢.最关键的是,我们在阅读这些经典书籍时,似乎是在用心与一位编程高手交流,这绝对是一种享受. 我们把问题缩小到计算机网络编程领域.关于计算机网络编程的相关书籍,不得不

《Linux高性能服务器编程》——第1章 TCP/IP协议族 1.1 TCP/IP协议族体系结构以及主要协议

第1章 TCP/IP协议族 现在Internet(因特网)使用的主流协议族是TCP/IP协议族,它是一个分层.多协议的通信体系.本章简要讨论TCP/IP协议族各层包含的主要协议,以及它们之间是如何协作完成网络通信的. TCP/IP协议族包含众多协议,我们无法一一讨论.本书将在后续章节详细讨论IP协议和TCP协议,因为它们对编写网络应用程序具有最直接的影响.本章则简单介绍其中几个相关协议:ICMP协议.ARP协议和DNS协议,学习它们对于理解网络通信很有帮助.读者如果想要系统地学习网络协议,那么R

《Linux高性能服务器编程》——第2章 IP协议详解 2.1 IP服务的特点

第2章 IP协议详解 IP协议是TCP/IP协议族的核心协议,也是socket网络编程的基础之一.本章从两个方面较为深入地探讨IP协议: 由于32位表示的IP地址即将全部使用完,因此人们开发出了新版本的IP协议,称为IPv6协议,而原来的版本则称为IPv4协议.本章前面部分的讨论都是基于IPv4协议的,只在最后一节简要讨论IPv6协议. 在开始讨论前,我们先简单介绍一下IP服务. 2.1 IP服务的特点 IP协议是TCP/IP协议族的动力,它为上层协议提供无状态.无连接.不可靠的服务. 无状态(

《Linux高性能服务器编程》——1.7 socket和TCP/IP协议族的关系

1.7 socket和TCP/IP协议族的关系 前文提到,数据链路层.网络层.传输层协议是在内核中实现的.因此操作系统需要实现一组系统调用,使得应用程序能够访问这些协议提供的服务.实现这组系统调用的API(Application Programming Interface,应用程序编程接口)主要有两套:socket和XTI.XTI现在基本不再使用,本书仅讨论socket.图1-1显示了socket与TCP/IP协议族的关系. 由socket定义的这一组API提供如下两点功能:一是将应用程序数据从

《Linux高性能服务器编程》——2.4 IP路由

2.4 IP路由 IP协议的一个核心任务是数据报的路由,即决定发送数据报到目标机器的路径.为了理解IP路由过程,我们先简要分析IP模块的基本工作流程. 2.4.1 IP模块工作流程 IP模块基本工作流程如图2-3所示. 我们从右往左来分析图2-3.当IP模块接收到来自数据链路层的IP数据报时,它首先对该数据报的头部做CRC校验,确认无误之后就分析其头部的具体信息. 如果该IP数据报的头部设置了源站选路选项(松散源路由选择或严格源路由选择),则IP模块调用数据报转发子模块来处理该数据报.如果该IP

《Linux高性能服务器编程》——2.3 IP分片

2.3 IP分片 前文曾提到,当IP数据报的长度超过帧的MTU时,它将被分片传输.分片可能发生在发送端,也可能发生在中转路由器上,而且可能在传输过程中被多次分片,但只有在最终的目标机器上,这些分片才会被内核中的IP模块重新组装. IP头部中的如下三个字段给IP的分片和重组提供了足够的信息:数据报标识.标志和片偏移.一个IP数据报的每个分片都具有自己的IP头部,它们具有相同的标识值,但具有不同的片偏移.并且除了最后一个分片外,其他分片都将设置MF标志.此外,每个分片的IP头部的总长度字段将被设置为

《Linux高性能服务器编程》——3.3 TCP连接的建立和关闭

3.3 TCP连接的建立和关闭 本节我们讨论建立和关闭TCP连接的过程. 3.3.1 使用tcpdump观察TCP连接的建立和关闭 首先从ernest-laptop上执行telnet命令登录Kongming20的80端口,然后抓取这一过程中客户端和服务器交换的TCP报文段.具体操作过程如下: $ sudo tcpdump -i eth0 –nt '(src 192.168.1.109 and dst 192.168.1.108) or (src 192.168.1.108 and dst 192

《Linux高性能服务器编程》——3.9 TCP超时重传

3.9 TCP超时重传 在3.6节-3.8节中,我们讲述了TCP在正常网络情况下的数据流.从本节开始,我们讨论异常网络状况下(开始出现超时或丢包),TCP如何控制数据传输以保证其承诺的可靠服务. TCP服务必须能够重传超时时间内未收到确认的TCP报文段.为此,TCP模块为每个TCP报文段都维护一个重传定时器,该定时器在TCP报文段第一次被发送时启动.如果超时时间内未收到接收方的应答,TCP模块将重传TCP报文段并重置定时器.至于下次重传的超时时间如何选择,以及最多执行多少次重传,就是TCP的重传

《Linux高性能服务器编程》——3.4 TCP状态转移

3.4 TCP状态转移 TCP连接的任意一端在任一时刻都处于某种状态,当前状态可以通过netstat命令(见第17章)查看.本节我们要讨论的是TCP连接从建立到关闭的整个过程中通信两端状态的变化.图3-8是完整的状态转移图,它描绘了所有的TCP状态以及可能的状态转换. 图3-8中的粗虚线表示典型的服务器端连接的状态转移:粗实线表示典型的客户端连接的状态转移.CLOSED是一个假想的起始点,并不是一个实际的状态. 3.4.1 TCP状态转移总图 我们先讨论服务器的典型状态转移过程,此时我们说的连接