卷积神经网络不能处理“图”结构数据?这篇文章告诉你答案

本文要介绍的这一篇paper是ICML2016上一篇关于 CNN 在图(graph)上的应用。ICML 是机器学习方面的顶级会议,这篇文章--<< Learning CNNs for Graphs>>--所研究的内容也具有非常好的理论和实用的价值。如果您对于图的数据结构并不是很熟悉建议您先参考本文末的相关基础知识的介绍。

CNN已经在计算机视觉(CV)以及自然语言处理等领域取得了state-of-art 的水平,其中的数据可以被称作是一种Euclidean Data,CNN正好能够高效的处理这种数据结构,探索出其中所存在的特征表示。

图1 欧氏(欧几里德)数据(Euclidean Data)举例

所谓的欧氏(欧几里德)数据指的是类似于grids, sequences… 这样的数据,例如图像就可以看作是2D的grid数据,语音信号就可以看作是1D的grid数据。但是现实的处理问题当中还存在大量的 Non-Euclidean Data,如社交多媒体网络(Social Network)数据,化学成分(Chemical Compound)结构数据,生物基因蛋白(Protein)数据以及知识图谱(Knowledge Graphs)数据等等,这类的数据属于图结构的数据(Graph-structured Data)。CNN等神经网络结构则并不能有效的处理这样的数据。因此,这篇paper要解决的问题就是如何使用CNN高效的处理图结构的数据。

图2 Graph 数据举例

本文所提出算法思想很简单,将一个图结构的数据转化为CNN能够高效处理的结构。处理的过程主要分为两个步骤:1.从图结构当中选出具有代表性的nodes序列;2.对于选出的每一个node求出一个卷积的邻域(neighborhood field)。接下来我们详细的介绍算法相关的细节。

本paper将图像(image)看作是一种特殊的图(graph),即一种的grid graph,每一个像素就是graph当中的一个node。那么我猜想文章的motivation主要来自于想将CNN在图像上的应用generalize 到一般的graph上面。

那么我们首先来看一下CNN在Image当中的应用。如图3所示,左图表示的是一张图像在一个神经网络层当中的卷机操作过程。最底部的那一层是输入的特征图(或原图),通过一个卷积(这里表示的是一个3*3的卷积核,也就是文章当中的receptive filed=9)操作,输出一张卷积后的特征图。如图3 的卷积操作,底层的9个像素被加权映射到上层的一个像素;再看图3中的右图,表示从graph的角度来看左图底层的输入数据。其中任意一个带卷积的区域都可以看作是一个中心点的node以及它的领域的nodes集合,最终加权映射为一个值。因此,底部的输入特征图可以看作是:在一个方形的grid 图当中确定一些列的nodes来表示这个图像并且构建一个正则化的邻域图(而这个邻域图就是卷积核的区域,也就是感知野)。

图3 图像的卷积操作

按照这样的方式来解释,那么如paper中Figure1所示,一张4*4大小的图像,实际上可以表示为一个具有4个nodes(图中的1,2,3,4)的图(graph),其中每一个node还包括一个和卷积核一样大小的邻域(neighborhood filed)。那么,由此得到对于这种图像(image)的卷积实际上就是对于这4个node组成的图(graph)的领域的卷积。那么,对于一个一般性的graph数据,同样的只需要选出其中的nodes,并且求解得到其相关的固定大小(和卷积核一样大小)领域便可以使用CNN卷积得到图的特征表示。

图4 paper中的Figure1

需要注意的是,图4(b)当中表示的是(a)当中的一个node的邻域,这个感知野按照空间位置从左到右,从上到下的顺序映射为一个和卷积核一样大小的vector,然后再进行卷积。但是在一般的图集当中,不存在图像当中空间位置信息。这也是处理图数据过程当中要解决的一个问题。

基于以上的描述paper当中主要做了三个事情:1. 选出合适的nodes;2. 为每一个node建立一个邻域;3. 建立graph表示到 vector表示的单一映射,保证具有相似的结构特征的node可以被映射到vector当中相近的位置。算法具体分为4个步骤:

1. 图当中顶点的选择Node Sequence Selection

首先对于输入的一个Graph,需要确定一个宽度w(定义于Algorithm 1),它表示也就是要选择的nodes的个数。其实也就是感知野的个数(其实这里也就是表明,每次卷积一个node的感知野,卷积的stride= kernel size的)。那么具体如何进行nodes的选择勒?

实际上,paper当中说根据graph当中的node的排序label进行选择,但是本文并没有对如何排序有更多的介绍。主要采取的方法是:centrality,也就是中心化的方法,个人的理解为越处于中心位置的点越重要。这里的中心位置不是空间上的概念,应该是度量一个点的关系中的重要性的概念,简单的举例说明。如图5当中的两个图实际上表示的是同一个图,对其中红色标明的两个不同的nodes我们来比较他们的中心位置关系。比较的过程当中,我们计算该node和其余所有nodes的距离关系。我们假设相邻的两个node之间的距离都是1。

图5 图当中的两个nodes

那么对于图5当中的左图的红色node,和它直接相连的node有4个,因此距离+4;再稍微远一点的也就是和它相邻点相邻的有3个,距离+6;依次再相邻的有3个+9;最后还剩下一个最远的+4;因此我们知道该node的总的距离为23。同理我们得到右边的node的距离为3+8+6+8=25。那么很明显node的选择的时候左边的node会被先选出来。

当然,这只是一种node的排序和选择的方法,其存在的问题也是非常明显的。Paper并没有在这次的工作当中做详细的说明。

2. 找到Node的领域Neighborhood Assembly

接下来对选出来的每一个node确定一个感知野receptive filed以便进行卷积操作。但是,在这之前,首先找到每一个node的邻域区域(neighborhood filed),然后再从当中确定感知野当中的nodes。假设感知野的大小为k,那么对于每一个Node很明显都会存在两种情况:邻域nodes不够k个,或者是邻域点多了。这个将在下面的章节进行讲解。

图6 Neighborhood Assemble结果

如图选出的是6个nodes,对于每一个node,首先找到其直接相邻的nodes(被称作是1-neighborhood),如果还不够再增加间接相邻的nodes。那么对于1-neighborhood就已经足够的情况,先全部放在候选的区域当中,在下一步当中通过规范化来做最终的选择。

3. 图规范化过程Graph Normalization

假设上一步Neighborhood Assemble过程当中一个node得到一个领域nodes总共有N个。那么N的个数可能和k不相等的。因此,normalize的过程就是要对他们打上排序标签进行选择,并且按照该顺序映射到向量当中。

图7 求解node的receptive filed

如果这个node的邻域nodes的个数不足的话,直接全部选上,不够补上哑节点(dummy nodes),但还是需要排序;如果数目N超过则需要按着排序截断后面的节点。如图7所示表示从选node到求解出receptive filed的整个过程。Normalize进行排序之后就能够映射到一个vector当中了。因此,这一步最重要的是对nodes进行排序。

图8 Normalize 过程

如图8所示,表示对任意一个node求解它的receptive filed的过程。这里的卷积核的大小为4,因此最终要选出来4个node,包括这个node本身。因此,需要给这些nodes打上标签(labeling)。当然存在很多的方式,那么怎样的打标签方式才是最好的呢?如图7所示,其实从这7个nodes当中选出4个nodes会形成一个含有4个nodes的graph的集合。作者认为:在某种标签下,随机从集合当中选择两个图,计算他们在vector空间的图的距离和在graph空间图的距离的差异的期望,如果这个期望越小那么就表明这个标签越好!具体的表示如下:

得到最好的标签之后,就能够按着顺序将node映射到一个有序的vector当中,也就得到了这个node的receptive field,如图6最右边所示。

4. 卷积网络结构Convolutional Architecture

文章使用的是一个2层的卷积神经网络,将输入转化为一个向量vector之后便可以用来进行卷积操作了。具体的操作如图9所示。

图9 卷积操作过程

首先最底层的灰色块为网络的输入,每一个块表示的是一个node的感知野(receptive field)区域,也是前面求解得到的4个nodes。其中an表示的是每一个node的数据中的一个维度(node如果是彩色图像那就是3维;如果是文字,可能是一个词向量……这里表明数据的维度为n)。粉色的表示卷积核,核的大小为4,但是宽度要和数据维度一样。因此,和每一个node卷季后得到一个值。卷积的步长(stride)为4,表明每一次卷积1个node,stride=4下一次刚好跨到下一个node。(备注:paper 中Figure1 当中,(a)当中的stride=1,但是转化为(b)当中的结构后stride=9)。卷积核的个数为M,表明卷积后得到的特征图的通道数为M,因此最终得到的结果为V1……VM,也就是图的特征表示。有了它便可以进行分类或者是回归的任务了。

基础问题:

图的基本概念:主要有顶点和边构成,存在一个邻接矩阵A,如果对其中的nodes进行特征表示(Feat)的话如下右图。

====================================分割线================================

本文作者:AI研习社

本文转自雷锋网禁止二次转载,原文链接

时间: 2024-09-20 08:11:21

卷积神经网络不能处理“图”结构数据?这篇文章告诉你答案的相关文章

深度学习自动编码器还能用于数据生成?这篇文章告诉你答案

  什么是自动编码器 自动编码器(AutoEncoder)最开始作为一种数据的压缩方法,其特点有: 跟数据相关程度很高,这意味着自动编码器只能压缩与训练数据相似的数据,这个其实比较显然,因为使用神经网络提取的特征一般是高度相关于原始的训练集,使用人脸训练出来的自动编码器在压缩自然界动物的图片是表现就会比较差,因为它只学习到了人脸的特征,而没有能够学习到自然界图片的特征: 压缩后数据是有损的,这是因为在降维的过程中不可避免的要丢失掉信息: 到了2012年,人们发现在卷积网络中使用自动编码器做逐层预

如何用 Caffe 生成对抗样本?这篇文章告诉你一个更高效的算法

Fast Gradient Sign方法 先回顾一下<杂谈CNN:如何通过优化求解输入图像>中通过加噪音生成对抗样本的方法,出自Christian Szegedy的论文<Intriguing properties of neural networks>: 其中n是要求的噪音,是相应的系数,L是x+n属于某个类别的loss,c是某个错误类别的标签.论文中用来得到图像噪声的办法是L-BFGS,这个方法虽然稳定有效,但是很考验算力的,Christian在Google反正机器多又强,用这个

2016年研究数据可视化最不应该错过的10篇文章

2016年是数据可视化渐趋成熟的一年,越来越多的领域开始认识到数据可视化的重要性.同样在这一年,涌现出了大量关于数据可视化的文章,其中不乏富有创见性的观点和研究.我们选出了以下10篇最具启发性的文章,并给出了简短的介绍和评述. 1 -用30分钟回顾过去的39项图像感知研究 Kennedy Elliott 过去的许多年里我一直在想,在人类对图像认知过程的相关科学研究中,我们到底得到了哪些有用的结论?在搜集并阅读了大量资料后,我逐渐深入地认识到这项研究涉及的领域之广. 这是一篇对数据可视化基础研究极

入门篇:卷积神经网络指南(一)

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud 卷积神经网络听起来像一个奇怪的生物学和数学的组合,但它是计算机视觉领域最具影响力的创新之一.2012年是卷积神经网络最流行的一年,因为Alex Krizhevsky用它赢得当年的ImageNet竞争(基本上算得上是计算机视觉的年度奥运),它将分类错误记录从26%降至15%,这是惊人的改善.从那时起,深度学习开始流行起来,Facebook使用神经网络进行自动标记算法,Google进行照片搜索,亚马逊的产品推荐,

看了这篇文章,了解深度卷积神经网络在目标检测中的进展

近些年来,深度卷积神经网络(DCNN)在图像分类和识别上取得了很显著的提高.回顾从 2014 到 2016 这两年多的时间,先后涌现出了 R-CNN,Fast R-CNN, Faster R-CNN, ION, HyperNet, SDP-CRC, YOLO,G-CNN, SSD 等越来越快速和准确的目标检测方法. 1. 基于 Region Proposal 的方法 该类方法的基本思想是:先得到候选区域再对候选区域进行分类和边框回归.  1.1 R-CNN[1] R-CNN 是较早地将 DCNN

卷积神经网络算法的简单实现

前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献.目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化. 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法.CNN在手写体

一步一步学用Tensorflow构建卷积神经网络

0. 简介 在过去,我写的主要都是"传统类"的机器学习文章,如朴素贝叶斯分类.逻辑回归和Perceptron算法.在过去的一年中,我一直在研究深度学习技术,因此,我想和大家分享一下如何使用Tensorflow从头开始构建和训练卷积神经网络.这样,我们以后就可以将这个知识作为一个构建块来创造有趣的深度学习应用程序了. 为此,你需要安装Tensorflow(请参阅安装说明),你还应该对Python编程和卷积神经网络背后的理论有一个基本的了解.安装完Tensorflow之后,你可以在不依赖G

变形卷积核、可分离卷积?卷积神经网络中10大拍案叫绝的操作

CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向. 注:水平所限,下面的见解或许有偏差,望大牛指正.另外只介绍其中具有代表性的模型,一些著名的模型由于原理相同将不作介绍,若有遗漏也欢迎指出. 1. 卷积只能在同一组进行吗?-- Group convolution Group convolution 分组卷积,最早在Alex

还记得 Flappy Bird 么?这篇文章教你如何用神经网络破朋友圈纪录!

以下内容来源于一次部门内部的分享,主要针对AI初学者,介绍包括CNN.Deep Q Network以及TensorFlow平台等内容.由于笔者并非深度学习算法研究者,因此以下更多从应用的角度对整个系统进行介绍,而不会进行详细的公式推导. 关于Flappy Bird  Flappy Bird(非官方译名:笨鸟先飞)是一款2013年鸟飞类游戏,由越南河内独立游戏开发者阮哈东(Dong Nguyen)开发,另一个独立游戏开发商GEARS Studios发布.-- 以上内来自<维基百科> Flappy