FFMPeg代码分析:avcodec_decode_video2函数

该函数的作用是实现压缩视频的解码。在avcodec.h中的声明方式如下:

int avcodec_decode_video2(AVCodecContext *avctx, AVFrame *picture, int *got_picture_ptr, const AVPacket *avpkt);

待解码的数据保存在avpkt->data中,大小为avpkt->size;解码完成后,picture用于保存输出图像数据。

该方法的各个参数:

AVCodecContext *avctx:编解码上下文环境,定义了编解码操作的一些细节;

AVFrame *picture:输出参数;传递到该方法的对象本身必须在外部由av_frame_alloc()分配空间,而实际解码过后的数据储存区将由AVCodecContext.get_buffer2()分配;AVCodecContext.refcounted_frames表示该frame的引用计数,当这个值为1时,表示有另外一帧将该帧用作参考帧,而且参考帧返回给调用者;当参考完成时,调用者需要调用av_frame_unref()方法解除对该帧的参考;av_frame_is_writable()可以通过返回值是否为1来验证该帧是否可写。

int *got_picture_ptr:该值为0表明没有图像可以解码,否则表明有图像可以解码;

const AVPacket *avpkt:输入参数,包含待解码数据。

int attribute_align_arg avcodec_decode_video2(AVCodecContext *avctx, AVFrame *picture, int *got_picture_ptr,
 const AVPacket *avpkt)
{
    AVCodecInternal *avci = avctx->internal;
    int ret;
    // copy to ensure we do not change avpkt
    AVPacket tmp = *avpkt;

    if (!avctx->codec)
        return AVERROR(EINVAL);
    if (avctx->codec->type != AVMEDIA_TYPE_VIDEO) {
        av_log(avctx, AV_LOG_ERROR, "Invalid media type for video\n");
        return AVERROR(EINVAL);
    }

    *got_picture_ptr = 0;
    if ((avctx->coded_width || avctx->coded_height) && av_image_check_size(avctx->coded_width, avctx->coded_height, 0, avctx))
        return AVERROR(EINVAL);

    avcodec_get_frame_defaults(picture);

    if (!avctx->refcounted_frames)
        av_frame_unref(&avci->to_free);

    if ((avctx->codec->capabilities & CODEC_CAP_DELAY) || avpkt->size || (avctx->active_thread_type & FF_THREAD_FRAME)) {
        int did_split = av_packet_split_side_data(&tmp);
        apply_param_change(avctx, &tmp);
        avctx->pkt = &tmp;
        if (HAVE_THREADS && avctx->active_thread_type & FF_THREAD_FRAME)
            ret = ff_thread_decode_frame(avctx, picture, got_picture_ptr,
                                         &tmp);
        else {
            ret = avctx->codec->decode(avctx, picture, got_picture_ptr,
                                       &tmp);
            picture->pkt_dts = avpkt->dts;

            if(!avctx->has_b_frames){
                av_frame_set_pkt_pos(picture, avpkt->pos);
            }
            //FIXME these should be under if(!avctx->has_b_frames)
            /* get_buffer is supposed to set frame parameters */
            if (!(avctx->codec->capabilities & CODEC_CAP_DR1)) {
                if (!picture->sample_aspect_ratio.num)    picture->sample_aspect_ratio = avctx->sample_aspect_ratio;
                if (!picture->width)                      picture->width               = avctx->width;
                if (!picture->height)                     picture->height              = avctx->height;
                if (picture->format == AV_PIX_FMT_NONE)   picture->format              = avctx->pix_fmt;
            }
        }
        add_metadata_from_side_data(avctx, picture);

        emms_c(); //needed to avoid an emms_c() call before every return;

        avctx->pkt = NULL;
        if (did_split) {
            av_packet_free_side_data(&tmp);
            if(ret == tmp.size)
                ret = avpkt->size;
        }

        if (ret < 0 && picture->data[0])
            av_frame_unref(picture);

        if (*got_picture_ptr) {
            if (!avctx->refcounted_frames) {
                avci->to_free = *picture;
                avci->to_free.extended_data = avci->to_free.data;
                memset(picture->buf, 0, sizeof(picture->buf));
            }

            avctx->frame_number++;
            av_frame_set_best_effort_timestamp(picture, guess_correct_pts(avctx, picture->pkt_pts, picture->pkt_dts));
        }
    } else
        ret = 0;

    /* many decoders assign whole AVFrames, thus overwriting extended_data;
     * make sure it's set correctly */
    picture->extended_data = picture->data;

    return ret;
}

在该函数中,调用了ret = avctx->codec->decode(avctx, picture, got_picture_ptr, &tmp);实现解码功能。在当前demo中,codec类型为ff_hevc_decoder,decode指针指向的函数为hevc_decode_frame。ff_hevc_decoder的定义如下:

AVCodec ff_hevc_decoder = {
    .name                  = "hevc",
    .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
    .type                  = AVMEDIA_TYPE_VIDEO,
    .id                    = AV_CODEC_ID_HEVC,
    .priv_data_size        = sizeof(HEVCContext),
    .priv_class            = &hevc_decoder_class,
    .init                  = hevc_decode_init,
    .close                 = hevc_decode_free,
    .decode                = hevc_decode_frame,
    .flush                 = hevc_decode_flush,
    .update_thread_context = hevc_update_thread_context,
    .init_thread_copy      = hevc_init_thread_copy,
    .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
};

解码函数:

static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
                             AVPacket *avpkt)
{
    int ret;
    HEVCContext *s = avctx->priv_data;

    if (!avpkt->size) {
        ret = ff_hevc_output_frame(s, data, 1);
        if (ret < 0)
            return ret;

        *got_output = ret;
        return 0;
    }

    s->ref = NULL;
    ret = decode_nal_units(s, avpkt->data, avpkt->size);
    if (ret < 0)
        return ret;

    /* verify the SEI checksum */
    if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
        avctx->err_recognition & AV_EF_EXPLODE &&
        s->is_md5) {
        ret = verify_md5(s, s->ref->frame);
        if (ret < 0) {
            ff_hevc_unref_frame(s, s->ref, ~0);
            return ret;
        }
    }
    s->is_md5 = 0;

    if (s->is_decoded) {
        av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
        s->is_decoded = 0;
    }

    if (s->output_frame->buf[0]) {
        av_frame_move_ref(data, s->output_frame);
        *got_output = 1;
    }

    return avpkt->size;
}

熟悉编解码标准的同学都知道,H.264和HEVC都定义了网络抽象层NAL来执行传输层的任务,每一个NAL单元都按照规定保存了某些语法元素。函数decode_nal_units执行了对这些NAL单元进行解析并对NAL的下一层视频编码层VCL进行解码的任务。

时间: 2025-01-24 04:55:29

FFMPeg代码分析:avcodec_decode_video2函数的相关文章

FFMPeg代码分析:av_read_frame()函数的内部构造

上文中贴出了av_read_frame()函数的实现,现在更细致地分析一下其内部的实现流程. av_read_frame()开始后,通常会调用read_frame_internal(s, pkt)函数: static int read_frame_internal(AVFormatContext *s, AVPacket *pkt) { int ret = 0, i, got_packet = 0; av_init_packet(pkt); while (!got_packet && !s

FFMPeg代码分析:AVFrame结构体及其相关的函数

AVFrame结构体保存的是解码后和原始的音视频信息.AVFrame通过函数av_frame_alloc()初始化,该函数仅仅分配AVFrame实例本身,而没有分配其内部的缓存.AVFrame实例由av_frame_free()释放:AVFrame实例通常分配一次,重复使用,如分配一个AVFrame实例来保留解码器中输出的视频帧(此时应在恰当的时候使用av_frame_unref()清理参考帧并将AVFrame归零).该类所描述的数据通常由AVBuffer的API来保存一个引用计数,并保存于AV

FFMPeg代码分析:AVPacket结构体和av_read_frame函数

AVPacket结构用于保存压缩编码过的数据.在解码时,该结构的实例通常作为解复用器(demuxer)的输出并输入到解码器中:在编码时,通常是编码器的输出,并输入到复用器(muxer)中.该结构体的定义如下: typedef struct AVPacket { /** * A reference to the reference-counted buffer where the packet data is * stored. * May be NULL, then the packet dat

FFMPeg代码分析:AVFormatContext结构体

从先前的demo中可以看到,进入main函数所定义的第一个变量就是AVFormatContext的指针: int main(int argc, char *argv[]) { AVFormatContext *pFormatCtx = NULL; .... } 而且,往下看就会知道这个结构体将贯穿函数始终,avformat_open_input.av_find_stream_info.av_read_frame.av_close_input_file都需要这个结构作为参数.该结构在FFMPEG中

FFMPeg代码分析:AVCodecContext结构体

在调用avformat_open_input打开文件后,下一步调用av_find_stream_info函数从文件中读取音视频流的信息,而后AVFormatContext的结构体将会将这些信息保存在其中.在找到AVFormatContext的视频stream后,获取其codec保存到指向AVCodecContext的指针: // Find the first video stream for(i=0; i<pFormatCtx->nb_streams; i++) { if(pFormatCtx

FFMPeg代码分析:AVCodec结构体以及编解码器的查找和加载

书接上回.在调用av_find_stream_info函数分析媒体文件并找到其中的视频流之后,视频流的相关信息被存放在了AVFormatContext结构体实例中.此时AVCodecContext实例所保存的AVCodec仍然为空.该结构体的定义如下: typedef struct AVCodec { const char *name;//codec名称,如果是解码HEVC的文件,那就是"hevc" const char *long_name;//codec全名,"HEVC(

ffmpeg代码实现自定义encoder

1.概述 本文主要讲述如何用ffmpeg代码实现自己的encoder. 2.代码 [cpp] view plain copy   /*   *本程序主要实现一个自己的encoder并加入到encoder链中去,供api调用  *作者:缪国凯(MK)   *821486004@qq.com   *2015-6-4   */       #include "stdafx.h"      #ifdef __cplusplus   extern "C"   {   #end

C语言中的数组和指针汇编代码分析实例

  这篇文章主要介绍了C语言中的数组和指针汇编代码分析实例,本文用一则C语言例子来得到对应的汇编代码,并一一注解每句汇编代码的含义,需要的朋友可以参考下 今天看<程序员面试宝典>时偶然看到讲数组和指针的存取效率,闲着无聊,就自己写了段小代码,简单分析一下C语言背后的汇编,可能很多人只注重C语言,但在实际应用当中,当出现问题时,有时候还是通过分析汇编代码能够解决问题.本文只是为初学者,大牛可以飘过~ C源代码如下: 代码如下: #include "stdafx.h" int

传智播客c/c++公开课学习笔记--C语言与木马恶意代码分析和360安全防护揭秘

黑客代码分析与预防 笔记 [课程简介] C/C++语言是除了汇编之外,最接近底层的计算机语言,目前windows,linux,iOS,Android等主流操作系统都是用C/C++编写的,所以很多病毒.木马也都是用C/C++实现的.课程的目的就是通过C语言揭秘木马和各种远程控制软件的实现原理以及如何防护.  [课程知识点] 1.木马入侵系统的方式: 2.木马入侵到宿主目标后的关键行为分析: 3.可信任端口以及端口扫描技术: 4.远程控制的实现代码实现: 5.恶意代码中使用TCP.UDP协议与防火墙