改进的蚁群引导电网系统云数据聚类故障检测
张向丰
传统的蚁群算法在迭代过程中产生逆转变异,新的结点与链路也可能在任意时刻加入到云中,给电网系统云数据的云计算和故障数据预测检测带来很大难度,出现拥塞控制,导致聚类效果不好。结合云计算处理数据的特点,对传统的蚁群算法进行改进,提出一种改进的蚁群引导电网系统云数据聚类和故障检测算法,根据基因位随机数大小决定输出概率的精度,更新状态类别充分统计量,得到故障特征观测概率和初始概率,执行聚类中心更新规则。搭建的Hadoop集群云计算原型系统,在开源的云计算平台框架和HBase电网系统数据库下进行数据采集和算法实现。仿真结果表明,算法在数据聚类和故障检测中具有较好的应用性能。
改进的蚁群引导电网系统云数据聚类故障检测
时间: 2024-09-25 09:05:38