论文笔记之:Hybrid computing using a neural network with dynamic external memory

 

Hybrid computing using a neural network with dynamic external memory

Nature  2016 

 

  原文链接:http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature20101.pdf 

 

  摘要:人工智能神经网络 在感知处理,序列学习,强化学习领域得到了非常大的成功,但是限制于其表示变量和数据结构的能力,长时间存储知识的能力,因为其缺少一个额外的记忆单元。此处,我们引入一个机器学习模型,称为:a differentiable neural computer (DNC),包含一个 神经网络,可以读取和写入一个额外的记忆矩阵;类似于计算机当中的 random-access memory。像传统的计算机一样,可以利用其 memory 表示和执行一个复杂的数据结构,但是,像神经网络一样,也可以从数据中进行学习。当进行监督学习的时候,我们表明 一个 DNC 能够成功的回答模拟的问题,在自然语言中进行推理和论证问题。我们表明,他可以学习到类似 给定特定点的最短距离 和 推理在随机产生的图中丢失的连接,然后推广到特定的 graph,例如:交通运输网络 和 家谱树结构。当进行强化学习的时候,一个 DNC 可以完成移动 block 的难题。总的来说,我们的结果表明,DNCs 能够解决复杂的,结构化的任务,但是这些任务假如没有 external read-write memory,那么根本无法完成的任务。

 

  引言: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

时间: 2024-11-27 09:33:21

论文笔记之:Hybrid computing using a neural network with dynamic external memory的相关文章

论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

  Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016   本文提出了一种新的CNN 框架来处理跟踪问题.众所周知,CNN在很多视觉领域都是如鱼得水,唯独目标跟踪显得有点"慢热",这主要是因为CNN的训练需要海量数据,纵然是在ImageNet 数据集上微调后的model 仍然不足以很好的表达要跟踪地物体,因为Tracking问题的特殊性,至于怎么特殊的,且听细细道来. 目标跟

论文笔记之:Progressive Neural Network Google DeepMind

  Progressive Neural Network  Google DeepMind   摘要:学习去解决任务的复杂序列 --- 结合 transfer (迁移),并且避免 catastrophic forgetting (灾难性遗忘) --- 对于达到 human-level intelligence 仍然是一个关键性的难题.本文提出的 progressive networks approach 朝这个方向迈了一大步:他们对 forgetting 免疫,并且可以结合 prior know

论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

  Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation   xx  

论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21:43:53    这篇文章的 Motivation 来自于 MDNet:    本文所提出的 framework 为:                             

论文笔记: Dual Deep Network for Visual Tracking

论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. 文章将 边界和形状信息结合到深度网络中.底层 feature 和 高层 feature 结合起来,得到 coarse prior map,然后用 ICA-R model 得到更加显著的物体轮廓,以得到更好的似然性模型:  2. Dual network 分别处理两路不同的网络,使得前景和背景更加具

Video Frame Synthesis using Deep Voxel Flow 论文笔记

  Video Frame Synthesis using Deep Voxel Flow 论文笔记 arXiv    摘要:本文解决了模拟新的视频帧的问题,要么是现有视频帧之间的插值,要么是紧跟着他们的探索.这个问题是非常具有挑战性的,因为,视频的外观和运动是非常复杂的.传统 optical-flow-based solutions 当 flow estimation 失败的时候,就变得非常困难:而最新的基于神经网络的方法直接预测像素值,经常产生模糊的结果. 于是,在此motivation的基

Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记

  Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记 ECCV 2016    摘要: 许多经典问题可以看做是 图像转换问题(image transformation tasks).本文所提出的方法来解决的图像转换问题,是以监督训练的方式,训练一个前向传播的网络,利用的就是图像像素级之间的误差.这种方法在测试的时候非常有效,因为仅仅需要一次前向传播即可.但是,

论文笔记之:Visual Tracking with Fully Convolutional Networks

论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做是一个 黑匣子,只是用来提取特征,而是在大量的图像和 ImageNet 分类任务上关于 CNN 的 feature 做了大量的深度的研究.这些发现促使他们设计了该跟踪系统,他们发现: 不同的卷积层会从不同的角度来刻画目标.顶层的 layer 编码了更多的关于 语义特征并且可以作为种类检测器,而底层的

论文笔记之: Recurrent Models of Visual Attention

Recurrent Models of Visual Attention Google DeepMind   模拟人类看东西的方式,我们并非将目光放在整张图像上,尽管有时候会从总体上对目标进行把握,但是也是将目光按照某种次序(例如,从上倒下,从左到右等等)在图像上进行扫描,然后从一个区域转移到另一个区域.这么一个一个的区域,就是定义的part,或者说是 glimpse.然后将这些区域的信息结合起来用于整体的判断和感受. 站在某个底层的角度,物体的显著性已经将这个物体研究的足够透彻.本文就是从这些