【2017最佳机器学习论文】AlphaGo Zero最赏心悦目(一文读懂大咖论文)

前几天与杨静老师和刘江老师,讨论 2017 年人工智能进展时,没来得及说 2017 年最值得读的论文。

“什么是最值得读的论文”,这个话题,仁者见仁智者见智。

下面,说说我个人觉得今年收获最大的论文:

最赏心悦目的论文

Mastering the Game of Go without Human Knowledge 是 DeepMind 团队关于 AlphaGo Zero 的论文,发表于 Nature 期刊。

读这篇论文时,要与 DeepMind 先前讲解 AlphaGo 的另一篇论文,对照着读。那一篇论文的题目是,Mastering the Game of Go with Deep Neural Networks and Tree Search

比较这两篇论文,AlphaGo Zero 比先前的版本 AlphaGo 的算法,更精炼,但是功能更强大。而且 AlphaGo Zero 的论文,写得也更精彩。尤其是叙述 AlphaGo Zero 靠自我博弈,花了多少小时,发现了围棋定式。又花了多少天,AlphaGo Zero 棋力先后战胜樊麾和李世乭等等。

最有实践价值论文(两篇)

Attention Is All You Need 和 One Model To Learn Them All 这两篇论文,都是 Google Brain 团队的作品,而且都开源了源码,使用非常方便。

One Model to Learn Them All 论文图片

如果说深度学习,尤其是 CNN 的价值,在于用卷积算法,从原始数据中自动提炼特征,而不必像以往那样,靠人工来提炼特征。那么 Attention 的价值,在于对卷积进行反思。卷积不是提炼特征的唯一方法,而且也不一定是最佳方法。Google Brain 团队认为,Attention 在大多数场景下,可能比卷积更有效。

迄今为止,Attention 的算法大多数基于测算线性相似度。相信明年开始,会有更多的研究,着力于改造 Attention 的算法,尝试非线性相似度,甚至超越相似度,寻找更多的聚焦方式。

最有潜力研究方向

Superhuman AI for heads-up no-limit poker: Libratus beats top professionals 是 CMU 团队讲述人工智能德扑系统 Libratus 的论文,发表于 Science 期刊。

德扑面临着隐信息和反欺诈两个难题,比围棋更接近于真实世界的博弈。

AlphaGo 用深度强化学习,完美地解决了围棋的问题。接下去的悬念,是深度强化学习能否解决隐信息和反欺诈两个难题。有趣的是,Libratus 没有用深度强化学习,却相当漂亮地解决了这两个难题。明年的悬念是,DeepMind 的同事们,能否用深度强化学习来超越 Libratus?

原文发布时间为:2018-01-02

本文作者:邓侃

原文链接:【2017最佳机器学习论文】AlphaGo Zero最赏心悦目(一文读懂大咖论文)

时间: 2024-11-05 17:29:17

【2017最佳机器学习论文】AlphaGo Zero最赏心悦目(一文读懂大咖论文)的相关文章

【一文读懂Hinton最新论文】胶囊网络9大优势4大缺陷(视频+PPT)

先看下Aurélien Géron介绍 Capsule Networks的视频教程(英文字幕) PPT 由于笔者能力有限,本篇所有备注皆为专知内容组成员根据讲者视频和PPT内容自行补全,不代表讲者本人的立场与观点. 胶囊网络 Capsule Networks 你好!我是AurélienGéron,在这个视频中,我将告诉你们关于胶囊网络,一个神经网络的新架构.Geoffrey Hinton几年前就有胶囊网络的想法,他在2011年发表了一篇文章,介绍了许多重要的想法,他还是很难让这些想法实现,但直到

【AlphaGo之后会是什么】一文读懂人工智能打德扑

冷扑大师 Libratus 与"冷门" NIPS 2017 最佳论文 CMU 教授 Tuomas Sandholm 及其学生 Noam Brown 所开发的人工智能德扑系统 Libratus,被国内同行翻译成 "冷扑大师".冷扑大师在 2017年1月,与四位德扑职业高手对阵,大获全胜,赢得了接近总数的筹码 [1]. 2017年11月,Noam Brown 与 Tuomas Sandholm 合著的论文,"Safe and Nested Endgame So

【一文读懂AlphaGo Zero算法】白话蒙特卡洛树搜索和ResNet

AlphaGo Zero 令人惊艳.不过,有些评论似乎渲染过度,把它的算法说得神乎其神.大数医达创始人,CMU计算机学院暨机器人研究所博士邓侃在本文中,尝试用大白话,通俗地解释 AlphaGo Zero,弄清楚蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS).深度学习启发函数和置信上限这三大核心概念. AlphaGo Zero 引起巨大社会轰动 只告诉机器围棋的基本规则,但是不告诉它人类摸索了上千年才总结出来的定式等围棋战术,让机器完全依靠自学,打败人类.这个题目不仅

【一文读懂Hinton最新Capsules论文】CNN 未来向何处去

Hinton 上周发表的一篇论文 Dynamic Routing Between Capsules 提出用 Capsule 这个概念代替反向传播,引起广泛关注,大数医达创始人,CMU计算机学院暨机器人研究所博士邓侃用浅显的语言梳理解读了论文.邓侃认为,capsule 作为视觉数学表征,很可能是为了把视觉,听觉.阅读的原本相互独立的数学向量,统一起来,完成多模态机器学习的终极目标. CNN 未来向何处去? 做领袖不容易,要不断地指明方向.所谓正确的方向,不仅前途要辉煌,而且道路要尽可能顺畅. G

一文读懂机器学习,大数据/自然语言处理/算法全有了……

作者:计算机的潜意识 在本篇文章中,我将对机器学习做个概要的介绍.本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践.这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核.当然,本文也面对一般读者,不会对阅读有相关的前提要求. 在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢? 我并不直接回答这个问题前.相反,我想请大家看两张图,下图是图一: 图1 机器学习界的执牛耳者

一文读懂机器学习、数据科学、人工智能、深度学习和统计学之间的区别

在这篇文章中,数据科学家与分析师 Vincent Granville 明晰了数据科学家所具有的不同角色,以及数据科学与机器学习.深度学习.人工智能.统计学.物联网.运筹学和应用数学等相关领域的比较和重叠.Granville 介绍说,由于数据科学是一个范围很广的学科,所以他首先介绍了在业务环境中可能会遇到的数据科学家的类型,你甚至可能会发现你自己原来也是某种数据科学家.和其它任何科学学科一样,数据科学也可能会从其它相关学科借用技术.当然,我们也已经开发出了自己的技术库,尤其是让我们可以以自动化的方

一文读懂机器学习概率图模型(附示例&学习资源)

概率图模型是人工智能领域内一大主要研究方向.近日,数据科学家Prasoon  Goyal在其博客上发表了一篇有关概率图模型的基础性介绍文章.文章从基础的概念开始谈起,并加入了基础的应用示例来帮助初学者理解概率图模型的实用价值.本文对该文章进行了编译介绍. 第一部分:基本术语和问题设定 机器学习领域内很多常见问题都涉及到对彼此相互独立的孤立数据点进行分类.比如:预测给定图像中是否包含汽车或狗,或预测图像中的手写字符是 0 到 9 中的哪一个. 事实证明,很多问题都不在上述范围内.比如说,给定一个句

重磅 | ICML 2017最佳论文公布!机器学习的可解释性成热点

雷锋网(公众号:雷锋网)消息,8月6日,机器学习领域最具影响力的学术会议之一的ICML 2017在澳大利亚悉尼正式开幕.当天,除了举行多场Tutorial外,ICML还在官网正式公布了本次会议的最佳论文评选结果.在前线雷锋网AI科技评论的两位编辑(张驰和刘芳平)第一时间为大家带来获奖论文的报道. 本届ICML最佳论文的主题是,利用影响函数理解黑箱预测.机器学习中的一个关键问题就是,系统为何做出某种预测? 我们不仅需要表现优异的模型,更需要可解释的模型.理解了模型如何做出决策,也就能进一步改善它.

DT科技评论第26期:人工智能界年度顶级会议AAAI 2017最佳论文出炉

DT科技评论 Data Technology Review 第 26 期           人民网研究院,阿里云研究中心 本期目录 人工智能界年度顶级会议AAAI 2017最佳论文出炉 巨舰再起航 Salesforce以AI+CRM再战江湖 物联网监测雾霾 美国城市向家庭智能硬件推送空气质量信息 Swarm AI精确预测超级碗最终比分 大逆转剧情难逃群集智能预测 拨款2450万美元建立"无人小镇" 韩国政府也要支持无人驾驶上路 AI如何助力电网智能化? 人工智能芯片收益显著 NVID