大数据项目成功的七大秘密

文章讲的是大数据项目成功的七大秘密,大数据项目的成功有哪些法宝?又有哪些陷阱会导致大数据项目的失败?本文中的三位专家将对此进行详解。

  如今,许多企业都理解了大数据的构成,但是要取得大数据项目的成功则是另一回事。Gartner公司的分析师,Doug Laney。 Forrester公司分析师Mike Gualtieri。International Institute for Analytics的高级研究学者,Robert Morison 都是大数据领域的专家,他们对于企业如何使用大数据有着独特的视角。 以下是他们认为可以帮助大数据项目成功的因素 ,以及那些可能会导致大数据项目失败的原因。

  从小项目开始

  CIO们以前也听到过这个建议,但从小项目开始到底意味着什么? “这意味着从一个你认为可以提高业务绩效的领域着手,从一个你认为分析更多数据可以获得更多信息的领域着手,” Institute的Morison说。

  他举了一个制药企业的案例,这家企业想把它的产品收率提高1%到2%。使用传统的商业智能工具, 它可以分析一定数量的生产历史,从而发现生产流程中可以进行调整的部分。然后,企业想知道,如果分析更多的数据,是否可以帮助确定生产表现的真正推动力。随后,采用Hadoop相关的开源技术,该企业在一周内分析了过去三年的生产历史。

  “很快,他们开始开发各种变量组合的热点地图——在这个案例中,压力,温度,搅拌和速率这些参数,都可以带来更高的产品收率,” Morison说。“因此,在几个月的时间内,他们从分析更多数据能带来什么成果,发展到在制造工厂开展实验,从而获得产量的提高。 ”

  不断试验

  是时候CIO们和业务主管从传统的消费,目标导向的IT项目管理风格中脱离出来了, Morison说。取而代之的,鼓励试验项目和创造性思维。在之前提到的制药企业案例中,“目标就是一边进行试验,一边进步和学习,”他说。“这一案例中真正有价值的是,一旦他们开始这样做,每一批新的产品,就成为了数据库的一部分。 他们拥有了一个持续的反馈回路。这个试验使业务表现越来越好。”

  Gartner的Laney认为试验应该包括 “那些看似并不自然相关的数据源集成在一起。” 比如,零售商,分析监控录像数据“来了解商店内的客流量,”让他们有机会确定购物习惯和购物模式,他说。

  采用Hadoop技术

  大数据不是只有Hadoop技术,“但Hadoop是一个很大的催化剂”,因为它既廉价,又容易获取, Forrester的Gualtieri说。 许多获得大数据项目成功的企业,都或多或少以Hadoop技术为背景。“采用Hadoop。把它作为你的数据试验平台,因为你可以在相对成本更高效的情况下,整合所有数据, ”他说。

  点亮“暗数据”

  Laney把企业内存储后就再没有使用过的数据称为 “暗数据,”他鼓励CIO们考虑这些数据的价值。一些企业已经开始这样做了。比如,保险公司,使用文本挖掘工具分析以往的理赔报告,来更好地理解保险行业的欺诈行为或发展趋势,Laney说。

  此外,让暗数据重见天日可能带来新的,有价值的收入来源。Dollar General公司通过和客户分享消费包装商品信息来支付他们的企业数据仓库费用, Laney说。软件即服务供应商Clothes Horse, 是一家新创立的,帮助在线购物者决定衣服是否合身的企业,它分析顾客数据来帮助零售商更好的了解顾客的偏好。更多新平台也不断出现,帮助分发,并销售各类供应商的数据,Laney说,包括: Microsoft;ProgrammableWeb,2013年被MuleSoft收购;Data Market,去年秋天被QlikTech收购;还有qDatum,一家总部位于德国的创业公司。

  不要跟随R语言热潮

  虽然开源编程语言R通常与数据科学相关联,CIO们不需要雇佣熟悉R语言的数据科学家来开始一个高级分析项目。现成的软件对于企业已经足够。 Gualtieri认为,正如CIO们不会让Java开发人员对商业智能报告进行编程一样,这同样适用于高级分析项目。 Alpine Data Labs,Alteryx,SAS,RapidMiner和KNIME的工具足够成熟,来完成80%的预测分析工作,而不必从头开始创建一切,他说。

  不要仅是报告数据

  超越传统的分析方法,使用大数据进行分析的企业具有巨大优势。“这已经远不是饼图和柱状图了,”Gartner的Laney说。 “将数据集成到业务流程中,而不只是报告数据。”Gualtieri同时认为高级分析项目是一个优势。 “你能在继续传统报告的同时,使用大数据做出更好的报告吗?但是这并没有带来很多不同。 真正的竞争优势是当你使用那些数据,创建预测模型,”他说。遗憾的是,缺乏这样的数据科学家,Gualtieri说超越传统分析的想象力非常稀缺。

  不要认为分析一定会被采纳

  Morison认为分析项目失败的其中一个原因是 “相当不错的分析项目完成后,但没有被采用。”与业务部门密切合作,可以避免这类问题,他说,最近与几位首席分析师的谈话中,他得出这样的经验: “如果没有业务合作伙伴在过程中的支持,他们是不会开始项目的,即使这个项目很值得进行。

作者:凌燕

来源:IT168

原文链接:大数据项目成功的七大秘密

时间: 2024-10-25 13:00:26

大数据项目成功的七大秘密的相关文章

你造吗?这才是大数据项目成功的7大秘密

文章讲的是你造吗,这才是大数据项目成功的7大秘密,大数据项目的成功有哪些法宝?又有哪些陷阱会导致大数据项目的失败?本文中的三位专家将对此进行详解. 如今,许多企业都理解了大数据的构成,但是要取得大数据项目的成功则是另一回事.Gartner公司的分析师,Doug Laney. Forrester公司分析师Mike Gualtieri.International Institute for Analytics的高级研究学者,Robert Morison 都是大数据领域的专家,他们对于企业如何使用大数

何多数的大数据项目以失败告终?

几乎每个人的心目中,大数据就是企业IT部门的大大小小的结构化和非结构化数据,而且其量正在成倍的增长.但是,尽管大数据已然成为了一种主流的IT现象,多数的大数据项目仍然以失败而告终. 究其原因,就在于企业很难找到适当的方法进行大数据的收集.管理和理解,并最终从大数据信息中提取出有价值的东西. 征服大数据项目,并最终从中提取出您企业所需要的业务洞察力本身就是一项非常艰巨的任务.但当涉及到定义大数据项目的范畴,以及确保相关配套设施到位方面时,您企业的相关人员无法保持统一的步伐,那么,该项目注定是要失败

大数据项目遭遇失败的八个理由

大数据目前已经成为万众瞩目的焦点,已经有众多企业在拼命把自己的数据投付使用.希望借此为重要决策提供支持.尽管大数据宣传与炒作可谓如火如荼,但仍有 92%的企业始终保持中立态度,即计划在"合适的时间"着手实施或者表示不打算接触大数据项目.而在那些已经亲身实践大数据项目的企业中,多数遭遇失败.而且往往是掉进了同样的几个陷阱当中. 取得大数据项目成功的关键在于构建一套迭代型方案,鼓励现有员工参与并使用,从而在一系列无关紧要的失败中学习知识并积累经验. 从众心理 大数据绝对是项转折性的伟大技术

为何多数的大数据项目以失败告终?

 几乎每个人的心目中,大数据就是企业IT部门的大大小小的结构化和非结构化数据,而且其量正在成倍的增长.但是,尽管大数据已然成为了一种主流的IT现象,多数的大数据项目仍然以失败而告终. 究其原因,就在于企业很难找到适当的方法进行大数据的收集.管理和理解,并最终从大数据信息中提取出有价值的东西. 征服大数据项目,并最终从中提取出您企业所需要的业务洞察力本身就是一项非常艰巨的任务.但当涉及到定义大数据项目的范畴,以及确保相关配套设施到位方面时,您企业的相关人员无法保持统一的步伐,那么,该项目注定是要失

大数据项目如何落地之路线图探讨

今天,继续来谈一谈"大数据项目如何落地?"这个话题.从事过多个大数据项目的规划方案及项目落地工作,在这里与大家分享一些心得,主要是关于大数据项目如何成功落地并取得预期目标,也可以说这些是实践出来的观点. 对于一个大数据应用项目/产品的落地,可以大致总结为五大步骤阶段: 数据规划.数据治理.数据应用.迭代实施.商业价值.如下图: 大数据项目落地路线图 第一阶段:数据规划 一个成功的大数据项目,需要有一个良好的开端,即做好数据规划阶段的各项工作,具体包括: 战略意图:在这个阶段,要明确战略

大数据项目开发的五个关键点

&http://www.aliyun.com/zixun/aggregation/37954.html">nbsp;   世界正"遨游"在大数据中!随着大数据影响力的增大,涉及大数据的项目正在迅速增加.据最近的调查,几乎三分之一的企业都在投资大数据项目,但是并非所有的投入都得到了回报,因此如何保证大数据项目的成功开发也成了各大企业最关心的问题. 下面小编将为大家介绍保证大数据项目成功开发的五个关键问题. 1.明确大数据项目的目标 大数据项目并不只是收集资料和信息

纯干货!如何做一个成功的大数据项目

1.失败大数据项目的特征 根据在美国做了15年的大数据项目.产品研发和管理,以及其它一些相关的数据分析的工作经验,了解到的其它的做的比较成功的和失败的项目,跟大家做一个经验分享.基本上大数据项目失败的特征主要是五个: 一是大数据项目与企业战略脱节,完全是领导或者是不知道那个部门的决策人突然脑子一热,就说别人在用,我们也做一个,根本没有把该做的项目和企业的商业战略.科技战略等各个方面结合起来.在项目无法与战略协调,无法在战略的指导下做一款产品或者是服务项目的时候,失败的可能性会非常大. 二是大数据

五大步骤让你创建持续成功的大数据项目

文章讲的是五大步骤让你创建持续成功的大数据项目,一些企业正在利用新兴技术来应对新的数据源,但大多数企业仍然面临着需要努力管理好他们已经掌握或者应当掌握的数据信息的困境,而当他们试图部署大数据功能时,发现自己还需要面对和处理新的以及当下实时的数据. 企业需要积极的提升他们的数据管理能力.这并非意味着他们应该制定繁琐的流程和监督机制.明智的企业会配合他们的数据活动的生命周期制定灵活的流程和功能:根据业务需求启动更轻更严格.更强大的功能,并根据需求的增加来提升质量或精度. 为了能够实现持久成功的大数据

运维专家:我在大数据项目中踩过的那些坑

一.主要讨论人员 提问:陈超,七牛云技术总监 回答:朱冠胤,百度资深大数据专家,连续两次百度最高奖得主. 二.引言 "坐而论道"是一个轮流问答的玩法.本文是大数据主题周中,几位国内一线专家激情问答的一部分内容.期间,各位群友也积极参与. 三.问题集锦 1.MongoDB在百度的使用场景及规模? 2.假设现在让你完全主导一个类似Hadoop的项目,你会选择哪种语言? 3.分享你在百度各种大数据项目中踩过的坑? 4.你所在团队在自研和使用开源方案的主要考虑因素? 5.新一代分布式数据库(N