零售大数据分析应用的四个阶段

要建立数学模型要解决三个问题,首先是数据的量要达到一定的规模和质量;其实是用什么样的算法,如用时间序列还是回归或是人工智能算法;第三是“数据+算法”可以围绕什么业务场景,建立什么样的模型及参数。

中国零售业所面临的最具挑战的竞争,就是顾客和市场需求的纷繁复杂及其飘忽不定的变化。而零售企业成功乃至存活的关键,就是如何采取灵活多变且机智的应对行动,这就要求管理者要能够顺应市场的变化、快速发现并处理问题,并且及时的制定解决方案和抓住市场机会。因此,基于数据和事实,质量更高、速度更快、成本更低的决策显现了前所未有的重要性。

中国零售企业在经历的十几年的信息化高度发展的历程,也积攒了大量的宝贵数据,但面对大数据这个“金矿”,各家企业由于经营模式、管理风格、重视程度、资金投入等不同,对于这个“金矿”的挖掘程度有极大的不同,零售大数据的分析应用均处在不同的阶段,甚至出现的“两极分化”的局面。

下面就是我在日常和零售企业接触的过程所总结出来的零售大数据分析应用的四个阶段,希望能够给大家指明方向。

第一阶段丨集成展示

有句话说的好“销售额首先是追踪出来的,其次才是分析出来的”。

ERP在中国普及进程已经有了10多年历史,没有ERP的企业可谓越来越少。零售企业利用ERP可以搜集和整合整个企业的数据,形成一个完整的数据流,把企业内不同来源的数据信息集中到单一的一个仓库中来,使各个职能在自己需要的时间和地点通过图表看板、计分板的形式看到自己所需要的数据,并且展现出决策者最为关注的运营要素—关键绩效指标如销售额、坪效、利润率、客单价、进店率、转化率、目标完成率、同比增长率等等,这些都可以以“商业报告”的形式出现,该报告的主题紧紧围绕着“过去发生了什么”以及“正在发生什么”而展开,这也是大多数BI系统和数据中心平台的核心功能。

这一阶段的最大的困难为数据的集成和整合,每个零售企业都有数十个大大小小的部门系统,而这些系统都是一个独立的数据源,他们都有自己的定义、标准和侧重,而对这些来源不同数据进行合并、清理、转换和简化,最终建立一致性的数据是非常有挑战性的。

第二阶段丨分析判断

在第一阶段整合了数据来源后,零售业决策者关心的重点发生了转移,从“发生了什么”转向“为什么发生”。分析判断数据的目的是了解数据报表、商业报告的背后的含义,以及这些过往行为发生的动机和原因,这就需要对更加详细的数据进行多维度的分析。这种分析判断更多的是建立在对于零售业务逻辑的理解之上,一般会采用简单有效的分析方法和简便的分析工具对数据进行处理。

该阶段数据分析师这一角色开始真正出现,数据分析师需要非常熟悉业务,最好有实际业务操作的背景,能够用业务的语言和逻辑把运营异常解释的通顺,此阶段不要求对算法、模型和工具的应用非常高深,而对于快速将数据分析结果进行落地,赢取各个业务部门的信任的要求非常高。

例如一个服装品牌的一款裙装销售好的超出预期,那就要找从“人、货、场”三个核心来找原因分析判断火爆原因:

  • 是否有什么买赠、打折、捆绑、支付等促销活动,店员对该商品是否有特殊的推荐等;
  • 该商品的陈列、包装、设计、款式等是否有特色、是否是限量销售、限时特价等等;
  • 以及顾客购买此商品的动机是什么,是否要释放压力、还是从众心理、攀比心态等;

此外,还要考虑竞争对手是否有断货问题、大型企业客户是否有团购等因素,甚至出现了在排除各种原因之后才知道,这款裙装和当时热播电视剧中某个明星穿的比较相似,因电视剧热播而带动了该款裙子的热销,虽然在该款衣服上所投入过多的市场资源其实并不多。

第三阶段丨预测未来

企业在有了前两个阶段的基础之后,关注点会进一步超越当前,开始思考更贴近经营上的问题:“将来会发生什么”。

从本质上说预测就是根据零售企业所过去发生的事件以及当前实时的影响因素,对于销售额、利润率、成本等未来的取值做出自动化和智能化的估计。简单的分析对于估算畅销概率的作用有限,在大多数复杂的应用中,需要建立数学模型来还原零售的业务规律。

例如建立销售预测模型来量化销量的影响因素及各因素之间的交互影响、建立定价优化模型来还原价格与销量之间的关系并找到最科学的价格以实现经营目标。而建立模型的目的就是将之前各个角落里的经验用数学的形式表现出来,虽然并不是十全十美,但会无限逼近真实情况。

要建立数学模型要解决三个问题,首先是数据的量要达到一定的规模和质量;其实是用什么样的算法,如用时间序列还是回归或是人工智能算法;第三是“数据+算法”可以围绕什么业务场景,建立什么样的模型及参数。

例如Google的工程师从众多关于流感的关键词组合中,挑出45个重要检索词条作为特征,训练了一个线性回归模型来预测2007年和2008年流感传播的趋势、时间和地点,该模型预测结果的准确率最后高达97%,而该模型完全可以和关于流感的商品如口罩、营养食品、非处方药品等销售建立起联系,构建“流感商品销售指数”,来指导这些商品在特定时间、地点的具体销售数量。

再例如7-Eleven零售门店通过卫星云图了解到两天后气温将上升两度,会提前订购比平常销量多30%的矿泉水。

第四阶段丨指导决策

这一阶段侧重于对业务、营运、经营、战略的决策的指导,回答的问题其实就是:“我应该做什么”才能达到最佳的状态。前三个阶段都不是终极目的,例如销售预测不是为了预测而预测,预测准确率达到100%又如何,关键是做了预测以后能给企业的决策行为带来什么样的帮助,对于零售企业而言,销售预测以后紧接着的行为就是补货,补货过程中就会涉及到多级库存管理。

而补货行为又驱动了后续的采购、生产、物流、仓储等行为,同时企业的决策层可以根据未来的预测来做出是否要开设渠道、建立工厂、购买仓库等重要战略决策,这些行为的决策都是建立在前三个阶段之上的。同时决策模拟也是这个阶段的重要应用,针对零售流程中的随机因素,引入各种约束条件,构建出若干个相互关联的场景模型来全真模拟真实情景,从而事先预知各种决策可能的结果,提高决策准确性。

大数据时代已经悄然来临,不懂大数据就做不了大生意,未来甚至做不了生意。

我所接触的不少中国零售企业对于大数据的分析应用都处在第一或者第二阶段,也有少数企业如京东、华为处在第三甚至初步进入第四阶段,虽然不少企业所处的阶段还比较低,但是至少有两点让我看到了希望:很多企业的数据基础都很不错,积攒了大量的数据,同时很多零售企业对于大数据应用的意愿和兴趣都非常强烈和热切。

这些企业对于自身的业务也非常的精通,只是受制于算法、人才、技术等对于如何把业务和数据结合在一起产生价值还不甚清楚,但是这些未来都不会成为中国零售企业对于大数据孜孜追求的障碍,因为未来一定会出现大量的第三方公司来提供专业的数据分析、建模和优化服务,帮助企业早日迈入数据驱动决策阶段。 

原文发布时间为:2017-10-16 

本文作者:小数点

时间: 2024-11-05 16:31:47

零售大数据分析应用的四个阶段的相关文章

剖析大数据分析方法论的几种理论模型

做大数据分析的三大作用,主要是:现状分析.原因分析和预测分析.什么时候开展什么样的数据分析,需要根据我们的需求和目的来确定. 利用大数据分析的应用案例更加细化的说明做大数据分析方法中经常用到的几种理论模型. 以营销.管理等理论为指导,结合实际业务情况,搭建分析框架,这是进行大数据分析的首要因素.大数据分析方法论中经常用到的理论模型分为营销方面的理论模型和管理方面的理论模型. 管理方面的理论模型: PEST.5W2H.时间管理.生命周期.逻辑树.金字塔.SMART原则等 PEST:主要用于行业分析

导入物联网、大数据分析及云计算的第四次医疗革命

制药产业也正朝医疗4.0的愿景而努力.PEXELS 回顾前面三次工业革命,可以发现,每一次工业革命的变革,多半都是由新科技的出现所引发.如第一次是瓦特发明蒸汽机,利用水力及蒸汽的力量作为动力源,也因此成为轻工业的基础;第二次则是1870年使用电力为大量生产提供动力,奠定重工业的发展基础;第三次工业革命则是使用电子设备及信息技术(IT),来增进工业制造的自动化.换句话说,科技发展不仅为制造业生产力带来改变的契机,同时也改变相关产业的营运模式. 医疗4.0的定义     医疗4.0的愿景之一,在于减

日本零售O2O七大模式分析 大数据分析是未来的关键

[猛科技说]在网购问题上,日本人还是比较保守,据调查称,只有20%的顾客乐意单纯在网上购物,78%的还要去实体店确认商品.这一点看,我们就开放多了.本篇作者就为广大读者来剖析,从日本本土零售O2O的七大模式观之,全方位透析大数据分析将成为未来关键的观点. 在日本,电子商务.全渠道.O2O等等,发展的历史都不长.与美国和中国相比,日本电子商务的规模相对较小.根据日本外务省的统计,2013年日本电子商务的规模约为1400亿美元(约为美国的50%),而且增长率也比美中两国低一些.在2011年-2013

大数据分析架构中需要权衡的四个因素

文章讲的是大数据分析架构中需要权衡的四个因素,通过提供对更广泛信息集的访问,大数据就可以为数据分析师和业务用户产生分析见解提供一臂之力.成功的大数据分析应用程序会揭示某些趋势和模式,以此来为决策制定提供更好的服务,并会指出新的创收机会和让企业领先于他们的商业竞争对手的方法.但首先,企业往往需要增强他们现有的IT基础设施建设以及数据管理流程以支持大数据架构的规模和复杂性. Hadoop系统和NoSQL数据库已经成为管理大数据环境的重要工具.不过,在很多情况下,企业利用他们现有的数据仓库设施,或是一

聚合大数据分析和应用玩家 他们搞啥?

文章讲的是聚合大数据分析和应用玩家 他们搞啥,近年来,大数据正日益成为国家基础性战略资源,蕴藏着巨大的潜力和能量.在国家层面,发展大数据已成为提升竞争力的战略选择;在经济层面,发展大数据已成为打造新动能的关键要素;在行业层面,发展大数据已成为驱动转型发展的重要引擎;推动大数据发展已成为从政府到民间.从行业组织到企业机构的社会共识. 在这样的背景之下,2016年9月13-14日,国内独立第三方移动数据服务平台TalkingData主办的T112016暨TalkingData智能大数据峰会在北京中国

大数据分析专题:利用向外扩展技术深入挖掘商业价值(1)

  方方面面的发展改进已经让从半结构化数据中获取有价值信息成为可能.以Hadoop为代表的新型解决方案在构建层面就充分考虑到了要如何适应跨商用服务器集群的分布式运行环境. 大数据:以需求为导向的审视角度 新型分析工具与极大丰富的处理能力为我们敞开了一道大门,如今企业已经能够借此对庞大的业务及外部数据加以审视并获取有价值结论. 作者:DAVID S. LINTHICUM 从数据池当中挖掘有价值信息,从而实现知识提升的能力早已不算什么新鲜事.事实上,早在一个多世纪以前,这样的处理方式就已经成为科学与

[重磅]清华大数据产业联合会"应用创新"系列第1讲:大数据分析(46PPT)

2014年11月26日晚,清华大数据产业联合会成立仪式在清华大学舜德楼401室召开,联合会依托于清华大学独特的师资和生源优势.清华大学多个院系和学科在大数据相关领域多年的积累与探索,联合大数据产业链中的优秀龙头企业与创新企业,旨在提供大数据产业链的思维碰撞与资源对接平台,促进产.学.研良性互动,以产业需求带动复合型大数据人才的培养,推动大数据生态系统中的各方合作共赢.会议由联合会秘书长王霞主持. 到场的嘉宾有: 清华大学杨斌副校长,清华大学数据科学研究院执行副院长.清华大数据产业联合会会长韩亦舜

看完这些案例,你就能玩转大数据分析!

文章讲的是看完这些案例,你就能玩转大数据分析,如今我们处在一个人人谈论大数据的时代.为何大数据如此火爆?就是因为数据蕴含无限价值.而这个价值如何挖掘却是个费解的难题.一些企业已经意识到这一点,开始拥抱大数据.下面介绍一些国内外利用大数据创造价值的代表案例. 大数据帮零售企业制定促销策略 北美零售商百思买在北美的销售活动非常活跃,产品总数达到3万多种,产品的价格也随地区和市场条件而异.由于产品种类繁多,成本变化比较频繁,一年之中,变化可达四次之多.结果,每年的调价次数高达12万次.最让高管头疼的是

2015年大数据分析的八大趋势预测

ZDNet至顶网服务器频道 05月26日 :Intuit数据工程副主管Loconzolo双脚都已经迈进数据湖里,SmarterRemarketer首席数据科学家DeanAbbott也为云技术的发展指出了捷径.他们二人一致认为,大数据与分析学前沿是个活动目标,这一领域包含了储存原始数据的数据湖和云计算.尽管这些技术并未成熟,但等待也并非上策.  Loconzolo表示:"现实的情况是,这些工具都刚刚兴起,他们构筑的平台还不足以让企业依赖.但是,大数据和分析学等学科发展十分迅速,因此企业必须努力跟上