中国人工智能学会通讯——迎接深度学习的“大”挑战(下) 1.1 深度学习的训练方法和技巧

摘要:本部分主要介绍了深度学习的训练方法和技巧、深度学习的挑战和应对方法等问题。 最后结合眼下 AI 的研究进展,对深度学习领域深刻的“吐槽”了一番,妙趣横生且发人深省。

1.1 深度学习的训练方法和技巧

前面提到的 BN 方法还不能解决所有的 问题。 因为即便做了白化,激活函数的导 数的最大值也只有 0.25,如果层数成百上 千,0.25 不断连乘以后,将很快衰减为 0。 所以后来又涌现出一些更加直接、更加有 效的方法。其基本思路是在各层之间建立 更畅通的渠道,让信息流绕过非线性的激 活函数。这类工作包含 Highway Network、 LSTM、ResNet 等。

Highway Network 和 LSTM 一脉相承, 除了原来的非线性通路以外,增加了一个 由门电路控制的线性通路。两个通路同时 存在,而这两个通路到底谁开启或者多大 程度开启,由另外一个小的神经网络进行 控制。

相比之下,ResNet 的做法更加直接, 它不用门电路控制,而是直接增加总是开 通的线性通路。虽然这些方法的操作方式 不同,但是它们的基本出发点是一样的, 就是在一定程度上跳过非线性单元,以线 性的方式把残差传递下去,对神经网络模 型的参数进行有效的学习。

在前面提到的各项技术的帮助下,深层 神经网络的训练效果有了很大的提升。这 张图展示了网络不断加深、效果不断变好 的历史演变过程。2012 年 ImageNet 比赛中 脱颖而出的 AlexNet 只有 8 层,后来变成 19 层、22 层, 到 2015 年,ResNet 以 152 层的复杂姿态出场,赢得了 ImageNet 比赛 的冠军。

从这张图上可以看出,随着层数的不断 变深,图像的识别错误率不断下降,由此 看来,网络变深还是很有价值的。

到此为止,我们把深度学习及其训练方 法和技巧给大家做了一个非常简短的介绍。

时间: 2024-12-30 05:16:20

中国人工智能学会通讯——迎接深度学习的“大”挑战(下) 1.1 深度学习的训练方法和技巧的相关文章

中国人工智能学会通讯——文字识别技术现状、挑战及机遇

今天非常高兴在这里作一个文字识别的技术现状.目前存在的问题及挑战.学术研究和商业应用机遇,以及未来技术发展趋势的报告. 首先简要谈一下人工智能.去年3月份,美国纽约时报采访了硅谷一些IT的大神们,请他们谈一下未来IT领域当中什么方向是潜在的爆发点,当时很多专家都不约而同谈到一个观点,就是人工智能很可能是未来IT领域的大事件.其实不仅仅是在工业界,在计算机学术界乃至整个科学界,人工智能过去几年都是非常热门的研究话题,举例来说,在过去两年,与深度学习和机器学习相关的文章已经有5次上了Nature或S

中国人工智能学会通讯——“智能+”时代的金融大数据应用

今天这个论坛是智能金融论坛,我们理解智能金融其实就是人工智能的金融--AI+金融,我今天演讲的题目就是智能时代下的金融大数据应用.我4月底在这个会场全球移动互联网大会有一个讲话,时间比较短15分钟,今天很感谢柳博士给了我30分钟,我要好好利用这30分钟,把我们过去平安做的工作和我们团队做的工作给大家做一点汇报,后面的交流时间请大家多多提意见. 现在互联网+谈的是比较少的,主要是模式的创新.去年从阿尔法狗开始到今年1年多时间,大家谈的更多的是人工智能和智能+.我们更多要思考的,人工智能不是一个新的

《中国人工智能学会通讯》——6.8 主要技术挑战和近期进展

6.8 主要技术挑战和近期进展 近年来,虽然实体链接技术取得了长足的进展,并得到了一定程度的应用.但是实体链接任务仍有很多问题尚未解决,需要进一步的研究和探索.以下列举几个实体链接的主要技术挑战及相关进展. 实体名的歧义性和多样性.歧义性和多样性是自然语言的固有属性,也是实体链接的根本难点所在.因此如何挖掘更多.更有效的消歧证据,设计更高性能的消歧算法,构建覆盖度更高的实体引用表仍然是实体链接系统的核心研究问题. 实体链接系统的效率.考虑到实体链接系统面向的文本规模(Web 网页集合)和大部分应

《中国人工智能学会通讯》——11.25 单目视频下运动物体建模及分析

11.25 单目视频下运动物体建模及分析 特征点轨迹是刻画视频中不同图像帧匹配关系的一种常用表示,其首先提取图像中的特征点,例如Harris 特征点,然后利用 Lucas-Kanade 方法[3]对这些特征点进行跟踪得到.由于特征点具有显著性和稳定性的特点,特征点轨迹往往较精确而且可以持续较长时间,从而能准确刻画物体的长时间运动.如图3所示,本章主要研究基于特征点轨迹的运动视频分割,其关键在于对同一个物体上轨迹进行运动建模. 已有研究表明,在仿射摄像机下,同一个运动物体上的轨迹在一个低维线性子空

《中国人工智能学会通讯》——12.24 问题与挑战

12.24 问题与挑战 目前,关于时空众包技术的研究方兴未艾,还有很多研究方向值得学者们深入探索.下文简述其中 3 类潜在的研究方向,供后续研究者们参考. (1) 时空众包数据的建模问题.现有工作对时空众包的空间信息均采用网格坐标方式进行建模,并且将众包参与者在空间的移动方式简单地建模为直线移动,这并不符合现实生活中众包参与者的真实应用场景.因此,如何利用路网来建模位置信息及参与者移动方式,是未来建立时空众包数据模型的一个挑战. (2) 时空众包数据的存储与索引问题.由于时空众包应用包含大量动态

中国人工智能学会通讯——深度学习与视觉计算 1.3 计算机视觉领域利用深度学习可能带来的未来研究方向

1.3 计算机视觉领域利用深度学习可能带来的未来研究方向 第一个,深度图像分析.目前基于深度 学习的图像算法在实验数据库上效果还是 不错的,但是远远不能够满足实际大规模 应用需求,需要进一步的提升算法性能从 而能够转化相应的实际应用.比如这个基 于图片的应用,可以估计性别和年龄,但 是其实经常会犯错,因此需要进一步提升 深度图像分析的性能. 第二个,深度视频分析.视频分析牵扯 到大量的数据和计算量,所以做起来更加 麻烦.当前深度视频分析还处于起步的阶 段,然而视频应用非常广泛,比如人机交互. 智

中国人工智能学会通讯——着力突破与创新 实现超越与引领

提 要 2016年3月,围棋人机大战的结果,在舆论界激起了惊涛骇浪:在科技界也引起了强烈反响.为了把握人工智能的发展现状和规律,探讨我国人工智能的发展战略,在中国人工智能学会和众多人工智能同行的支持下,由本文作者出面申请了一次高层战略研讨会,这就是以"发展人工智能,引领科技创新"为主题的香山科学会议.与会者同气相求.同心协力,站在国家战略的高度,以纵览全球的视野,通过深入的研讨和论证,凝聚了诸多宝贵的共识,形成了直送中央的<关于加快发展我国人工智能的专家建议>.本文简要介绍

中国人工智能学会通讯——机器学习里的贝叶斯基本理论、模型和算法

非常感 谢周老师给这个机会让我跟大家分享一下.我今天想和大家分享的是,在深度学习或者大数据环境下我们怎么去看待相对来说比较传统的一类方法--贝叶斯方法.它是在机器学习和人工智能里比较经典的方法. 类似的报告我之前在CCF ADL讲过,包括去年暑假周老师做学术主任在广州有过一次报告,大家如果想看相关的工作,我们写了一篇文章,正好我今天讲的大部分思想在这个文章里面有一个更系统的讲述,大家可以下去找这篇文章读. 这次分享主要包括三个部分: 第一部分:基本理论.模型和算法 贝叶斯方法基础 正则化贝叶斯推

中国人工智能学会通讯——无智能,不驾驶——面向未来的智能驾驶时代 ( 下 )

到目前为止似乎比较完美,而实际还 存在着一些问题.我们现在看到很多道 路上面,交通标志牌它的分布非常稀疏, 可能每过一两公里才能够检测出来一个 交通标志牌,因为毕竟这个深度学习算 法是目前最完美的,它有时候还会错过 一个交通标志牌,这时候怎么办呢?我 们会发现在路面上也有非常明显的视觉 特征,我只要把路面的这些视觉特征识 别出来进行匹配,其实是有连续的绝对 的视觉参考的.所以我们做的办法是, 把这个路面粘贴起来.这个粘贴的方法 很简单,跟我们手机拍场景图片一样, 我们慢慢移动的时候可以把这个场景