C#数据结构与算法揭秘18

这节我们介绍堆排序。

、堆排序

在直接选择排序中,顺序表是一个线性结构,要从有n个记录的顺序表中选择出一个最小的记录需要比较n-1 次。如能把待排序的n个记录构成一个完全二叉树结构,则每次选择出一个最大(或最小)的记录比较的次数就是完全二叉树的高度, 即log2n次, 则排序算法的时间复杂度就是O (nlog2n) 。 这就是堆排序(Heap Sort)的基本思想。
堆分为最大堆和最小堆两种。最大堆的定义如下:
设顺序表sqList中存放了n个记录, 对于任意的i(0≤i≤n-1), 如果2i+1<n时有 sqList[i]的关键码不小于 sqList[2i+1]的关键码;如果 2i+2<n 时有sqList[i] 的关键码不小于 sqList[2i+2] 的关键码,则这样的堆为最大堆。 如果把这 n 个记录看作是一棵完全二叉树的结点,则 sqList[0]对应完全二叉树的根, sqList[1]对应树根的左孩子结点, sqList[2]对应树根的右孩子结点, sqList[3]对应 sqList[1]的左孩子结点,sqList[4]对应 sqList[2]的右孩子结点,如此等等。在此基础上,只需调整所有非叶子结点满足:sqList[i] 的关键码不小于 sqList[2i+1] 的关键码和 sqList[i] 的关键码不小于 sqList[2i+2]的关键码,则这样的完全二叉树就是一个最大堆。

如果把这 n 个记录看作是一棵完全二叉树的结点,则 sqList[0]对应完全二叉树的根, sqList[1]对应树根的左孩子结点, sqList[2]对应树根的右孩子结点, sqList[3]对应 sqList[1]的左孩子结点,sqList[4]对应 sqList[2]的右孩子结点,如此等等。在此基础上,只需调整所有非叶子结点满足:sqList[i] 的关键码不小于 sqList[2i+1] 的关键码和 sqList[i] 的关键码不小于 sqList[2i+2]
的关键码,则这样的完全二叉树就是一个最大堆。

下图1(a)所示是一棵完全二叉树,下图1(b)所示是一个最大堆。

类似地,最小堆的定义如下:
设顺序表sqList中存放了n个记录, 对于任意的i(0≤i≤n-1), 如果2i+1<n时有 sqList[i] 的关键码不大于 sqList[2i+1] 的关键码;如果 2i+2<n 时有sqList[i] 的关键码不大于 sqList[2i+2] 的关键码,则这样的堆为最小堆。 如果把这 n 个记录看作是一棵完全二叉树的结点,则 sqList[0]对应完全二叉树的根, sqList[1]对应树根的左孩子结点, sqList[2]对应树根的右孩子点,sqList[3]对应 sqList[1]的左孩子结点,sqList[4]对应 sqList[2]的右孩子结点,如此等等。在此基础上,只需调整所有非叶子结点满足:sqList[i] 的关键码不大于 sqList[2i+1] 的关键码和 sqList[i] 的关键码不大于 sqList[2i+2] 的关键码,则这样的完全二叉树就是一个最小堆。下图(a)所示是一棵完全二叉树,下图(b)所示是一个最小堆。

由堆的定义可知,堆有如下两个性质:
(1)最大堆的根结点是堆中关键码最大的结点,最小堆的根结点是堆中关键码最小的结点,我们称堆的根结点记录为堆顶记录。
(2)对于最大堆,从根结点到每个叶子结点的路径上,结点组成的序列都是递减有序的;对于最小堆,从根结点到每个叶子结点的路径上,结点组成的序列都是递增有序的。
堆排序的过程是:设有 n 个记录,首先将这 n 个记录按关键码建成堆,将堆顶记录输出,得到 n 个记录中关键码最大(或最小)的记录。然后,再把剩下的n-1 个记录,输出堆顶记录,得到 n 个记录中关键码次大(或次小)的记录。如此反复,便可得到一个按关键码有序的序列。 

因此,实现堆排序需解决两个问题:
(1)如何将 n 个记录的序列按关键码建成堆;
(2)输出堆顶记录后,怎样调整剩下的 n-1 个记录,使其按关键码成为一个新堆。
首先,以最大堆为例讨论第一个问题:如何将 n 个记录的序列按关键码建成堆。
根据前面的定义,顺序表 sqList 中的 n 个记录构成一棵完全二叉树,所有的叶子结点都满足最大堆的定义。 对于第 1 个非叶子结点 sqList[i] (i=(n-1)/2) ,由于其左孩子结点 sqList[2i+1]和右孩子结点 sqList[2i+2]都已是最大堆,所以,只需首先找出 sqList[2i+1]结点和 sqList[2i+2]结点中关键码的较大者,然后与 sqList[i]结点的关键码进行比较,如果 sqList[i]结点的关键码大于或等于这个较大的结点的关键码,则以 sqList[i]结点为根结点的完全二叉树已满足最大堆的定义;否则,对换 sqList[i]结点和关键码较大的结点,对换后以sqList[i]结点为根结点的完全二叉树满足最大堆的定义。按照这样的方法,再调整第 2 个非叶子结点 sqList[i-1] (i=(n-1)/2) ,第 3 个非叶子结点sqList[i-2],……,直到根结点。当根结点调整完后,则这棵完全二叉树就是一个最大堆了。
当要调整结点的左右孩子结点是叶子结点时,上述调整过程非常简单;当要调整结点的左右孩子结点不是叶子结点时,上述调整过程要稍微复杂一些。因为调整过后,可能引起以左孩子结点(或右孩子结点)为根结点的完全二叉树不是一个最大堆,这时,需要调整以左孩子结点(或右孩子结点)为根结点的完全二叉树,使之成为一个最大堆.

下图3

说明了如何把图1(a)所示的完全二叉树建成图1(b)所示的最大堆的过程。

第一步:从 i=(n-1)/2=(7-1)/2=3 开始,sqList[3]的关键码 27 小于sqList[7]的关键码 48, 所以, sqList[3]与 sqList[7]交换, 这样, 以 sqList[3]为根结点的完全二叉树是一个最大堆,如图(b)所示。

第二步:当 i=1 时,由于 sqList[1]的关键码 20 小于 sqList[3]的关键码48,所以将 sqList[1]与 sqList[3]交换,这样导致 sqList[3]的关键码 20 小于sqList[7]的关键码 27, 所以将 sqList[3]与 sqList[7]交换, 这样, 以 sqList[1]为根结点的完全二叉树是一个最大堆,如图(d)所示。

第三步:当 i=0 时,对堆顶结点记录进行调整,由于 sqList[0] 的关键码42小于sqList[1] 的关键码 48,所以将 sqList[0]与 sqList[1]交换,这样,
以 sqList[0]为根结点的完全二叉树是一个最大堆,如图(e)所示,整个堆建立的过程完成。

建堆的算法如下所示,算法中记录的比较表示记录关键码的比较,顺序表中只存放了记录的关键码。

//创建堆的算法
public void CreateHeap(SeqList<int> sqList, int low, int high)
    {
        //判断是不是    小于这个   最大值是否是小于  他的count
        if ((low < high) && (high <= sqList.Last))
        {
           // 他的j的值
            int j = 0;
            //交换的变量
            int tmp = 0;
            //默认k的计数
            int k = 0;
            for (int i = high / 2; i >= low; --i)
            {
                //取得的i值
                k = i;
                //左子树
                j = 2 * k + 1;
                //相应的变量
                tmp = sqList[i];
                while (j <= high)
                {
                    //寻找下一个值
                    if ((j < high) && (j + 1 <= high)
&& (sqList[j] < sqList[j + 1]))
                    {
                        ++j;
                    }
                    //就想起商议5
                    if (tmp < sqList[j])
                    {
                        sqList[k] = sqList[j];
                        k = j;
                        j = 2 * k + 1;
                    }
                    else
                    {
                        j = high + 1;
                    }
                 }
                sqList[k] = tmp;
            }
        }
 }
//双层循环 算法的时间的复杂度是O(n2)

把顺序表中的记录建好堆后,就可以进行堆排序了。

堆排序的算法如下所示,算法中记录的比较表示记录关键码的比较,顺序表中只存放了记录的关键码:

 1 //进行堆排序
 2 public void HeapSort(SeqList<int> sqList)
 3     {
 4         //当前的变量
 5         int tmp = 0;
 6
 7          //创建相应的队
 8         CreateHeap(sqList, 0, sqList.Last);
 9
10         //进行循环遍历
11         for (int i = sqList.Last; i > 0; --i)
12         {
13            //进行相应交换的值
14             tmp = sqList[0];
15             sqList[0] = sqList[i];
16             sqList[i] = tmp;
17            //创建相应的值
18             CreateHeap(sqList, 0, i-1);
19         }
20 }
21 //由于用到递归,所以时间的复杂度是O(nlog2n)

下图4是图3(d)所示的最大堆进行堆排序的过程。
第一步:将堆顶记录(关键码为 48)与顺序表最后一个记录(关键码为 20进行交换,使得堆顶记录的关键码 20 比根结点的左孩子结点的关键码 42 小,于是重新调整堆(记录的范围是从顺序表的第一个记录到倒数第二个记录,为了表示出顺序表的最后一个记录不在调整的范围之内,下图4(a)已经把最后一个结点从完全二叉树中去掉,以下同)。调整过程见下图4(b)所示。
第二步:将堆顶记录(关键码为 42)与顺序表倒数第二个记录(关键码为17*)进行交换,使得堆顶记录的关键码 17*比根结点的左孩子结点的关键码 22小,于是重新调整堆(记录的范围是从顺序表的第一个记录到倒数第三个记录) 。调整过程见下图4(c)所示。
第三步: 将堆顶记录 (关键码为 27) 与顺序表倒数第三个记录 (关键码为 8)进行交换,使得堆顶记录的关键码 8 比根结点的左孩子结点的关键码 20 小,于是重新调整堆(记录的范围是从顺序表的第一个记录到倒数第四个记录) 。调整过程见下图4(d)所示。
第四步:将堆顶记录(关键码为 20)与顺序表倒数第四个记录(关键码为13)进行交换,使得堆顶记录的关键码 13 比根结点的左孩子结点的关键码 17*小,于是重新调整堆(记录的范围是从顺序表的第一个记录到倒数第五个记录) 。调整过程见下图4(e)所示。

第五步:将堆顶记录(关键码为 17*)与顺序表倒数第五个记录(关键码为8)进行交换,使得堆顶记录的关键码比根结点的右孩子结点的关键码 17 值小,于是重新调整堆(记录的范围是从顺序表的第一个记录到倒数第六个记录) 。调整过程见图 下图4(f)所示。
第六步: 将堆顶记录 (关键码为 17) 与顺序表倒数第六个记录 (关键码为 8)进行交换,使得堆顶记录的关键码 8 比根结点的左孩子结点的关键码 13 小,于1是重新调整堆(记录的范围是从顺序表的第一个记录到倒数第七个记录) 。调整过程见图4(g)所示。

第七步:将堆顶记录(关键码为 13)与顺序表第二个记录(关键码为 13)进行交换,调整过程结束。调整过程见图4(h)所示

堆排序是一种较难的排序,思路是构建堆,在排序。 下节我继续介绍排序的内容。

时间: 2024-11-09 14:41:06

C#数据结构与算法揭秘18的相关文章

C#数据结构与算法揭秘六

这节我们讨论两种用的蛮多的数据结构--串和数组 首先,老样子,什么是串,这里串不是吃的牛肉串,羊肉串,而是字符串.在应用程序中使用最频繁的类型是字符串.字符串简称串,是一种特殊的线性表,其特殊性在于串中的数据元素是一个个的字符.字符串在计算机的许多方面应用很广.如在汇编和高级语言的编译程序中,源程序和目标程序都是字符串数据.在事务处理程序中,顾客的信息如姓名.地址等及货物的名称.产地和规格等,都被作为字符串来处理.另外,字符串还具有自身的一些特性.因此,把字符串作为一种数据结构来研究.具体情况,

C#数据结构与算法揭秘二

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘二 线性结构_C#教程

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘二_C#教程

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘15

这节,我们主要讨论,一下克鲁斯卡尔算法实现 最小生成树.  克鲁斯卡尔算法的基本思想是:对一个有 n个顶点的无向连通网,将图中的边按权值大小依次选取,若选取的边使生成树不形成回路,则把它加入到树中:若形成回路,则将它舍     弃.如此进行下去,直到树中包含有 n-1条边为止. 以下图 (a)为例说明用克鲁斯卡尔算法求无向连通网最小生成树的过程. 第一步:首先比较网中所有边的权值,找到最小的权值的边(D,E),加入到生成树的边集 TE 中,TE={(D,E)}. 第二步:再比较图中除边(D,E)

C#数据结构与算法揭秘五

这节我们讨论了两种好玩的数据结构,栈和队列. 老样子,什么是栈, 所谓的栈是栈(Stack)是操作限定在表的尾端进行的线性表.表尾由于要进行插入.删除等操作,所以,它具有特殊的含义,把表尾称为栈顶(Top) ,另一端是固定的,叫栈底(Bottom) .当栈中没有数据元素时叫空栈(Empty Stack).这个类似于送饭的饭盒子,上层放的是红烧肉,中层放的水煮鱼,下层放的鸡腿.你要把这些菜取出来,这就引出来了栈的特点先进后出(First in last out).   具体叙述,加下图. 栈通常记

C#数据结构与算法揭秘16

这节我们就用的最多的算法--排序发起重点的讨论.   常见的排序分为冒泡排序,快速排序,直接插入排序 ,希尔排序,基数排序 ,简单选择排序 ,堆排序  等等. 一.冒泡排序 冒泡排序(Bubble Sort)的基本思想是:将相邻的记录的关键码进行比较,若前面记录的关键码大于后面记录的关键码,则将它们交换,否则不交换. 设待排序的顺序表 sqList 中有 n 个记录,冒泡排序要进行 n-1 趟,每趟循环均是从最后两个记录开始. 第 1 趟循环到第 2 个记录的关键码与第 1 个记录的关键码比较后

C#数据结构与算法揭秘19

这节,我们介绍基数排序和归并排序. 一.基数排序 基数排序(Radix Sort)的设计思想与前面介绍的各种排序方法完全不同.前面介绍的排序方法主要是通过关键码的比较和记录的移动这两种操作来实现排序的,而基数排序不需要进行关键码的比较和记录的移动.基数排序是一种借助于多关键码排序的思想,是将单关键码按基数分成多关键码进行排序的方法,是一种分配排序. 下面用一个具体的例子来说明多关键码排序的思想. 一副扑克牌有 52 张牌,可按花色和面值进行分类,其大小关系如下: 花色:梅花<方块<红心<

C#数据结构与算法揭秘九

这节,我们说一说二叉树常见的应用的场景.呵呵.............. 定义一个哈夫曼树,首先,要高清楚什么是哈夫曼树.所谓哈夫曼树是又叫最优二叉树,指的是对于一组具有确定权值的叶子结点的具有最小带权路径长度的二叉树. 介绍哈夫曼树的一些基本概念. (1)路径(Path):从树中的一个结点到另一个结点之间的分支构成这两个结点间的路径. (2)路径长度(Path Length):路径上的分支数. (3)树的路径长度(Path Length of Tree):从树的根结点到每个结点的路径长度之和.