C++实现图的邻接表存储和广度优先遍历实例分析_C 语言

本文实例讲述了C++实现图的邻接表存储和广度优先遍历方法。分享给大家供大家参考。具体如下:

示例:建立如图所示的无向图

由上图知,该图有5个顶点,分别为a,b,c,d,e,有6条边.

示例输入(按照这个格式输入):

5
6
abcde
0 1
0 2
0 3
2 3
2 4
1 4

输入结束(此行不必输入)

注:0 1表示该图的第0个顶点和第1个定点有边相连,如上图中的a->b所示
      0 2表示该图的第0个顶点和第2个定点有边相连,如上图中的a->c所示
      2 3表示该图的第2个顶点和第3个定点有边相连,如上图中的c->d所示

实现代码如下:

#include <stdio.h>
#include <malloc.h>
#define MAX_VEX 50
typedef struct NODE
{
 int ix; /* 顶点的索引 */
 struct NODE *next; /* 下一个表结点 */
}EdgeNode; /* 表结点 */
typedef struct
{
 char vex;
 EdgeNode *first; /* 第一个表结点 */
}Vertex; /* 表头结点 */
typedef struct
{
 Vertex vex[MAX_VEX];
 int n,e;
}GRAPH;
void Create(GRAPH *G);
void BFS(GRAPH *G,int k); /* 广度优先遍历 */
int main(int argc, char *argv[])
{
 GRAPH G;
 Create(&G);
 BFS(&G,0);

 return 0;
}
void BFS(GRAPH *G,int k)
{
 EdgeNode *p;
 int queue[MAX_VEX]; /* 循环队列 */
 int front = -1,rear = -1,amount = 0;
 int visited[MAX_VEX];
 int i,j;
 for(i = 0 ; i < MAX_VEX ; ++i)
  visited[i] = 0;

 printf("访问顶点:%c\n",G->vex[k].vex);
 visited[k] = 1;
 rear = (rear + 1) % MAX_VEX; /* 入队 */
 front = 0;
 queue[rear] = k;
 ++amount;

 while(amount > 0)
 {
  i = queue[front]; /* 出队 */
  front = (front + 1) % MAX_VEX;
  --amount;
  p = G->vex[i].first;

  while(p)
  {
   if(visited[p->ix] == 0)
   {
    printf("访问顶点:%c\n",G->vex[p->ix].vex);
    visited[p->ix] = 1;
    rear = (rear + 1) % MAX_VEX; /* 入队 */
    queue[rear] = p->ix;
    ++amount;
   }
   p = p->next;
  }

 }
}
void Create(GRAPH *G)
{
 printf("输入顶点数:\n");
 scanf("%d",&G->n);
 printf("输入边数:\n");
 scanf("%d",&G->e);
 getchar();
 EdgeNode *p;

 int i,j,k;
 for(i = 0 ; i < G->n ; ++i) /* 建立顶点表 */
 {
  scanf("%c",&G->vex[i].vex);
  G->vex[i].first = NULL;
 }

 for(k = 0 ; k < G->e ; ++k) /* 建立边表 */
 {/* 类似于头插法创建链表 */
  scanf("%d%d",&i,&j);
  p = (EdgeNode*)malloc(sizeof(EdgeNode));
  p->next = G->vex[i].first;
  p->ix = j;
  G->vex[i].first = p;

  p = (EdgeNode*)malloc(sizeof(EdgeNode));
  p->next = G->vex[j].first;
  p->ix = i;
  G->vex[j].first = p;
 }
}

希望本文所述对大家的C++程序设计有所帮助。

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索c++
, 图
, 广度优先遍历
邻接表存储
邻接表的广度优先遍历、邻接表广度优先遍历、邻接表广度优先搜索、邻接表深度优先遍历、邻接表的深度优先遍历,以便于您获取更多的相关知识。

时间: 2024-08-15 19:51:15

C++实现图的邻接表存储和广度优先遍历实例分析_C 语言的相关文章

C++实现图的邻接矩阵存储和广度、深度优先遍历实例分析_C 语言

本文实例讲述了C++实现图的邻接矩阵存储和广度.深度优先遍历的方法.分享给大家供大家参考.具体如下: 示例:建立如图所示的无向图 由上图知,该图有5个顶点,分别为a,b,c,d,e,有6条边. 示例输入(按照这个格式输入): 5 6 abcde 0 1 1 0 2 1 0 3 1 2 3 1 2 4 1 1 4 1 输入结束(此行不必输入) 注:0 1 1表示该图的第0个顶点和第1个定点有边相连,如上图中的a->b所示       0 2 1表示该图的第0个顶点和第2个定点有边相连,如上图中的a

图的邻接表存储结构

程序调用入口: using System; namespace Graphic_AdjacencyList { internal class Program { private static void Main(string[] args) { var adjacencyList = new AdjacencyList<char>(); Console.WriteLine("1.初始化树结构:"); Console.WriteLine("=============

在图采用邻接表存储时,求最小生成树的Prime算法的时间复杂度为?

问题描述 在图采用邻接表存储时,求最小生成树的Prime算法的时间复杂度为? 在图采用邻接表存储时,求最小生成树的Prime算法的时间复杂度为? A o(n^2) B o(n^3) C o(n) D o(n+e) 答案是o(n+e)...不理解..求过程 解决方案 不对,这题应该选A 求顶点的入度的时间复杂度为O(e)*n=O(n*e) 遍历顶点的时间复杂度是O(n^2) 相加是O(n^2+n*e)=O(n^2) 解决方案二: 详细的解释http://www.cskaoyan.com/redir

图的邻接表存储 c实现

图的邻接表存储 c实2011-10-07 10:34 4047人阅读 评论(2) 收藏 举报 存储cstruct数据结构null编程   用到的数据结构是 一个是顶点表,包括顶点和指向下一个邻接点的指针 一个是边表, 数据结构跟顶点不同,存储的是顶点的序号,和指向下一个的指针 刚开始的时候把顶点表初始化,指针指向null.然后边表插入进来,是插入到前一个,也就是直接插入到firstedge指向的下一个,而后面的后移   [cpp] view plaincopyprint? #define  Ma

图的邻接表存储表示示例讲解_C 语言

复制代码 代码如下: //---------图的邻接表存储表示------- #include<stdio.h>#include<stdlib.h> #define MAX_VERTEXT_NUM 20 typedef int InfoType;typedef char VertextType; typedef struct ArcNode{    int adjvex;    struct ArcNode *nextArc;    InfoType *info;}ArcNode;

C++虚函数表实例分析_C 语言

多态是C++面向对象程序设计的一个重要特性.以前看到虚函数觉得很神奇,为什么就能实现多态了呢.最初的时候曾设想,要实现运行时多态,应该让对象的某个部分始终指向一个固定的地址,子类继承的时候,就修改这个地址的内容.这样,父类和子类都是到同一个固定地址去读取内容,在运行时就能表现不同行为. 在看了<深度探索c++对象模型>之后,发现思路是类似的.在对象中,有一个指针指向一张虚函数表,里面按照次序存放了每一个虚函数,当子类继承的时候,即到虚函数表的指定位置去修改函数地址.当我们通过父类指针来操作一个

数据结构实践——操作用邻接表存储的图

本文是针对[数据结构基础系列(7):图]的实践. [项目 - 操作用邻接表存储的图] 假设图G采用邻接表存储,分别设计实现以下要求的算法: (1)输出出图G中每个顶点的出度: (2)求出图G中出度最大的一个顶点,输出该顶点编号: (3)计算图G中出度为0的顶点数: (4)判断图G中是否存在边<i,j>. 利用下图作为测试用图,输出结果. 提示:(1)分别设计函数实现算法:(2)不要全部实现完再测试,而是实现一个,测试一个:(3)请利用图算法库. [参考解答] #include <stdi

关键路径:php实现图的邻接表,关键路径,拓朴排序

<?php//调用require 'algraph.php';$a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j');$e = array('ab'=>'3', 'ac'=>'4', 'be'=>'6', 'bd'=>'5', 'cd'=>'8', 'cf'=>'7', 'de'=>'3', 'eg'=>'9', 'eh'=>'4', 'fh'=>'6', 'gj'=>

【算法导论】邻接表存储的拓扑排序

        上一篇文章中讲述了用邻接矩阵存储的图的拓扑排序,下面本文介绍用邻接表存储的图的拓扑排序.         关于拓扑排序的概念及基本思想,我在上一篇文章中已经较为详细的描述了,这里不在介绍.我们知道利用邻接矩阵进行拓扑排序时,程序实现较为简单,但是效率不高,算法的复杂度为O(n^3).而利用邻接表会使入度为0的顶点的操作简化,从而提高算法的效率. 在邻接表存储结构中,为了便于检查每个顶点的入度,可在顶点表中增加一个入度域(id),这样的邻接表如下图所示,这样只需对由n个元素构成的顶