RTP封装h264

网络抽象层单元类型 (NALU):

NALU头由一个字节组成,它的语法如下:

      +---------------+
      |0|1|2|3|4|5|6|7|
      +-+-+-+-+-+-+-+-+
      |F|NRI|  Type   |
      +---------------+

F: 1个比特.
  forbidden_zero_bit. 在 H.264 规范中规定了这一位必须为 0.

NRI: 2个比特.
  nal_ref_idc. 取00~11,似乎指示这个NALU的重要性,如00的NALU解码器可以丢弃它而不影响图像的回放. 

Type: 5个比特.
  nal_unit_type. 这个NALU单元的类型.简述如下:

  0     没有定义
  1-23  NAL单元  单个 NAL 单元包
  24    STAP-A   单一时间的组合包
  25    STAP-B   单一时间的组合包
  26    MTAP16   多个时间的组合包
  27    MTAP24   多个时间的组合包
  28    FU-A     分片的单元
  29    FU-B     分片的单元
  30-31 没有定义

h264仅用1-23,24以后的用在RTP H264负载类型头中

 

RTP 头的结构:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |V=2|P|X|  CC   |M|     PT      |       sequence number         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           timestamp                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           synchronization source (SSRC) identifier            |
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
      |            contributing source (CSRC) identifiers             |
      |                             ....                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      负载类型 Payload type(PT): 7bits
rfc里面对一些早期的格式定义了这个payload type。但是后来的,如h264并没有分配,那就用96来代替。因此现在96以上都不表示特定的格式,具体表示什么要用sdp或者其他协议来协商。

      序列号 Sequence number(SN): 16bits
      时间戳 Timestamp: 32bits

 

上面介绍了NALU和RTP header的基本结构,下面介绍的全部都是RTP PayLoad的部分

Rtp负载第一个字节的结构如下,它和H.264的NALU头结构一致,可以把它认为是RTP h264负载类型字节,完全是多增加的一个字节,不影响后面的NALU结构

      +---------------+
      |0|1|2|3|4|5|6|7|
      +-+-+-+-+-+-+-+-+
      |F|NRI|  Type   |
      +---------------+

这里的Type类型除1-23外还可取以下值:

  24    STAP-A   单一时间的组合包
  25    STAP-B   单一时间的组合包
  26    MTAP16   多个时间的组合包
  27    MTAP24   多个时间的组合包
  28    FU-A     分片的单元
  29    FU-B     分片的单元

如果使用1-23就是:单一NAL单元模式

 

封包介绍:

 

单一NAL单元模式

  对于 NALU 的长度小于 MTU 大小的包, 一般采用单一 NAL 单元模式.
  对于一个原始的 H.264 NALU 单元常由 [Start Code] [NALU Header] [NALU Payload] 三部分组成, 其中 Start Code 用于标示这是一个

NALU 单元的开始, 必须是 "00 00 00 01" 或 "00 00 01", NALU 头仅一个字节, 其后都是 NALU 单元内容.
  打包时去除 "00 00 01" 或 "00 00 00 01" 的开始码, 把其他数据封包的 RTP 包即可.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |F|NRI|  type   |                                               |
      +-+-+-+-+-+-+-+-+                                               |
      |                                                               |
      |               Bytes 2..n of a Single NAL unit                 |
      |                                                               |
      |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               :...OPTIONAL RTP padding        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

例:
  如有一个 H.264 的 NALU 是这样的:

  [00 00 00 01 67 42 A0 1E 23 56 0E 2F ... ]

  这是一个序列参数集 NAL 单元. [00 00 00 01] 是四个字节的开始码, 67 是 NALU 头, 42 开始的数据是 NALU 内容.

  封装成 RTP 包将如下:

  [ RTP Header ] [ 67 42 A0 1E 23 56 0E 2F ]

  即只要去掉 4 个字节的开始码就可以了.

 

 

组合封包模式

  其次, 当 NALU 的长度特别小时, 可以把几个 NALU 单元封在一个 RTP 包中.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          RTP Header                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |STAP-A NAL HDR |         NALU 1 Size           | NALU 1 HDR    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         NALU 1 Data                           |
      :                                                               :
      +               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               | NALU 2 Size                   | NALU 2 HDR    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         NALU 2 Data                           |
      :                                                               :
      |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               :...OPTIONAL RTP padding        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

这里只介绍STAP-A模式,如果是STAP-B的话会多加入一个DON域,另外还有MTAP16、MTAP24,具体不介绍,可以看rfc文档,文章尾贴一个链接可以去看。

转载的话注明一下作者:jwybobo2007 出处:http://blog.csdn.net/jwybobo2007/article/details/7054140

例:

 

如有一个 H.264 的 NALU 是这样的:

  [00 00 00 01 67 42 A0 1E 23 56 0E 2F ... ]

  [00 00 00 01 68 42 B0 12 58 6A D4 FF ... ]

  封装成 RTP 包将如下:

  [ RTP Header ] [78 (STAP-A头,占用1个字节)] [第一个NALU长度 (占用两个字节)] [ 67 42 A0 1E 23 56 0E 2F ] [第二个NALU长度 (占用两个字节)] [68 42 B0 12 58 6A D4 FF ... ]

 

分片的单元:

 

  当NALU的长度超过MTU时,就必须对NALU单元进行分片封包.也称为Fragmentation Units(FUs).
  
       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | FU indicator  |   FU header   |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
      |                                                               |
      |                         FU payload                            |
      |                                                               |
      |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               :...OPTIONAL RTP padding        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 14.  RTP payload format for FU-A

   The FU indicator octet has the following format:

      +---------------+
      |0|1|2|3|4|5|6|7|
      +-+-+-+-+-+-+-+-+
      |F|NRI|  Type   |
      +---------------+

   别被名字吓到这个格式就是上面提到的RTP h264负载类型,Type为FU-A

   The FU header has the following format:

      +---------------+
      |0|1|2|3|4|5|6|7|
      +-+-+-+-+-+-+-+-+
      |S|E|R|  Type   |
      +---------------+

        S bit为1表示分片的NAL开始,当它为1时,E不能为1

   E bit为1表示结束,当它为1,S不能为1

   R bit保留位

   Type就是NALU头中的Type,取1-23的那个值

 

附:

一个翻译过的rfc3984文档,翻译的有点乱,凑货的看看

http://wenku.baidu.com/view/0f612e1ec5da50e2524d7f32.html

转 http://blog.csdn.net/jwybobo2007/article/details/7054140

时间: 2024-10-25 02:56:22

RTP封装h264的相关文章

基于RTP的H264视频数据打包解包类

from:http://blog.csdn.net/dengzikun/article/details/5807694 最近考虑使用RTP替换原有的高清视频传输协议,遂上网查找有关H264视频RTP打包.解包的文档和代码.功夫不负有心人,找到不少有价值的文档和代码.参考这些资料,写了H264 RTP打包类.解包类,实现了单个NAL单元包和FU_A分片单元包.对于丢包处理,采用简单的策略:丢弃随后的所有数据包,直到收到关键帧.测试效果还不错,代码贴上来,若能为同道中人借鉴一二,足矣.两个类的使用说

RTP 打包H264与AAC

  static int h264_parse(Track *tr, uint8_t *data, size_t len)   {       h264_priv *priv = tr->private_data;   //    double nal_time; // see page 9 and 7.4.1.2       size_t nalsize = 0, index = 0;       uint8_t *p, *q;       if (priv->is_avc) {      

rtp h264注意点(FU-A分包方式说明)

前写过一篇文章,分析了h264使用rtp进行封包的格式介绍:RTP封装h264.但里面好像没有把拆分以及一些需要注意的情况说清楚,因此这里做补充,也作为自己的备忘(自己记性好像不太好).   关于时间戳,需要注意的是h264的采样率为90000HZ,因此时间戳的单位为1(秒)/90000,因此如果当前视频帧率为25fps,那时间戳间隔或者说增量应该为3600,如果帧率为30fps,则增量为3000,以此类推. 关于h264拆包,按照FU-A方式说明:1)第一个FU-A包的FU indicator

H264 NALU 使用PS封装 RTP发送

最近由于项目平台需求,要将H264 NALU封装为PS再用RTP发送,PS封装按照ISO DEC-13818-1标准.一个PS包包含PS Header, PES Header, PS system header, PS system map等. 针对H264做如下PS封装: 1.每个IDR NALU前一般都会包含SPS.PPS等NALU,因此将SPS.PPS.IDR 的NALU封装为一个PS包,包括ps头,然后加上PS system header,PS system map,PES header

RTP/RTCP(一)-H264关于RTP协议的实现

H264关于RTP协议的实现2010-07-22 13:35完整的C/S架构的基于RTP/RTCP的H.264视频传输方案.此方案中,在服务器端和客户端分别进行了功能模块设计.服务器端:RTP封装模块主要是对H.264码流进行打包封装:RTCP分析模块负责产牛和发送RTCP包并分析接收到的RTCP包:QoS反馈控制模块则根据RR报文反馈信息动态的对发送速率进行调整:发送缓冲模块则设置端口发送RTP.RTCP包.客户端:RTP模块对接收到的RTP包进行解析判断:RTCP模块根据SR报文统计关键信息

RTP协议全解析(H264码流和PS流)

写在前面:RTP的解析,网上找了很多资料,但是都不全,所以我力图整理出一个比较全面的解析, 其中借鉴了很多文章,我都列在了文章最后,在此表示感谢. 互联网的发展离不开大家的无私奉献,我决定从我做起,希望大家支持.   原创不易,转载请附上链接,谢谢http://blog.csdn.net/chen495810242/article/details/39207305 1.RTP Header解析                                                   

关于对H264码流的PS的封装的相关代码实现

1.写在开始之前:            最近因为新工作要维护别人留下的GB模块代码,先熟悉了流程,然后也试着封装了下ps流,结果也能通过测试正常预览了,当然,其中开发读文档的头疼,预览花屏,卡帧的事情都有遇到,当时慢慢的看文档,整理逻辑,也就都顺利解决了,下面把大致的一些流程代码贴出来分享下.既然是对接国标,自然少不了通读它的标准文档和相关的RFC文档了!具体的我就不说了,可以用百度google下的. 注意:因为是GB要求ps封装后再加上rtp头的格式来的, 所以下面代码中我也加上了rtp头,

h264-请教关于ffmpeg解码rtp码流的问题

问题描述 请教关于ffmpeg解码rtp码流的问题 小弟最近在学习网络视频流传输,有个疑问如下:用rtp流封装h264码流,rtp协议中有sequence和timestamp,我想请问这两者和PTS和DTS有关联吗?如果用ffmpeg解码,是否是按rtp包的有效数据加上0x00000001扔给解码器就行?SPS以及PPS中的数据需要初始化给ffmpeg吗? 本人小白,希望各位多多指教,谢谢! 解决方案 组包之后 Nal前面加上0x00000001, 扔个解码器 就行 了

嵌入式 RTP通话:视频流(H.264)的传输

从摄像头获取的视频数据,经过编码后(当然,也可以不编码,如果你觉得也很ok的话),既可以视频录制,同时如果需要,当然也可以视频远程传输咯,而实时传输协议(Real-time Transport Protocol,RTP)是在Internet上处理多媒体数据流的一种网络协议,利用它能够在一对一(unicast,单播)或者一对多(multicast,多播)的网络环境中实现传流媒体数据的实时传输(不需要下载完毕后才能看视频).RTP通常使用UDP来进行多媒体数据的传输,但如果需要的话可以使用TCP等其