《R数据可视化手册》一第3章 条形图3.1 绘制简单条形图

第3章 条形图

R数据可视化手册
条形图也许是最常用的数据可视化方法,通常用来展示不同的分类下(在x轴上)某个数值型变量的取值(在y轴上)。例如,条形图可以用来形象地展示四种不同商品的价格情况,但不适宜用来展示商品价格随时间的变动趋势,因为这里时间是一个连续变量——尽管我们也可以这么做,后面会看到这种情形。

绘制条形图时需特别注意一个重要的细节:有时条形图的条形高度表示的是数据集中变量的频数,有时则表示变量取值本身。牢记这个区别——这里极易混淆,因为两者与数据集的对应关系不同,但又对应同样的术语。本章将对此进行深入讨论,并分别介绍这两类条形图的绘图技巧。

3.1 绘制简单条形图

问题
你有一个包含了两列数据的数据框,其中一列数据表示条形在x轴上的位置,另一列表示每个条形在y轴上对应的高度,基于此,如何绘制条形图?

方法
使用ggplot()函数和geom_bar(stat="identity")绘制上述条形图,并分别指定与x轴和y轴对应的变量(见图3-1)。

library(gcookbook) #为了使用数据
ggplot(pg_mean, aes(x=group, y=weight)) + geom_bar(stat="identity")

讨论
当x是连续型(数值型)变量时,条形图的结果与上图会略有不同。此时,ggplot不是只在实际取值处绘制条形,而将在x轴上介于最大值和最小值之间所有可能的取值处绘制条形,如图3-2所示。我们可以使用factor()函数将连续型变量转化为离散型变量。

# 没有Time == 6的输入
BOD

 Time demand
   1  8.3
   2  10.3
   3  19.0
   4  16.0
   5  15.6
   7  19.8

# Time是数值型(连续型)变量
str(BOD)

'data.frame': 6 obs. of 2 variables:
 $ Time : num 1 2 3 4 5 7
 $ demand: num 8.3 10.3 19 16 15.6 19.8
 - attr(*, "reference")= chr "A1.4, p. 270"

ggplot(BOD, aes(x=Time, y=demand)) + geom_bar(stat="identity")

# 使用factor()函数将Time转化为离散型(分类)变量
ggplot(BOD, aes(x=factor(Time), y=demand)) + geom_bar(stat="identity")

本例中,数据集中包含两列分别对应于x和y变量。如果你想让条形图的高度与每组变量的频数相对应,可参见3.3节的内容。

默认设置下,条形图的填充色为黑灰色且条形图没有边框线,我们可通过调整fill参数的值来改变条形图的填充色;可通过colour参数为条形图添加边框线。在图3-3中,我们将填充色和边框线分别指定为浅蓝色和黑色。

ggplot(pg_mean, aes(x=group, y=weight)) +
  geom_bar(stat="identity", fill="lightblue", colour="black")

在ggplot2中,颜色参数默认使用的是英式拼写colour,而非美式拼写color。然而,ggplot2会在底层将美式拼写重映射为英式拼写,因此输入美式拼写的参数并不影响函数的运行。
另见
如果你想让条形图的高度对应于每组变量的频数,可参见3.3节的内容。

根据另一个变量值重排因子水平顺序的内容可参见15.9节。手动更改因子水平顺序的内容,可参见15.8节。

更多关于图形着色的内容,可参见本书第12章。

时间: 2024-10-04 15:43:52

《R数据可视化手册》一第3章 条形图3.1 绘制简单条形图的相关文章

《R数据可视化手册》——第1章 R基础

第1章 R基础 R数据可视化手册本章包括以下基础知识:安装包.使用包和加载数据. 如果你想快速上手,本书大多数技巧都需要安装ggplot2和gcookbook包.运行下面命令来安装: install.packages(c("ggplot2", "gcookbook"))``` 然后,在每个R会话中,你需要在运行本书的例子之前先加载它们: library(ggplot2)library(gcookbook)`附录A提供了一个关于ggplot2绘图包的简介,主要是面向不

《R数据可视化手册》——第2章 快速探索数据

第2章 快速探索数据 R数据可视化手册虽然本书中大部分图形都是通过ggplot2包绘制的,但这并不是R绘制图形的唯一方法.要快速探索数据,有时使用R基础包中的绘图函数会很有用.这些函数随R软件默认安装,无需另行安装附加包.它们简短易输入,处理简单问题时使用方便,且运行速度极快. 如果你想绘制较为复杂的图形,那么,转用ggplot2包通常是更好的选择.部分原因在于ggplot2提供了一个统一的接口和若干选项来替代基础绘图系统中对图形的修修补补和各种特例.一旦掌握了ggplot2的工作机制,你就可以

《R数据可视化手册》——第3章 条形图

第3章 条形图 R数据可视化手册条形图也许是最常用的数据可视化方法,通常用来展示不同的分类下(在x轴上)某个数值型变量的取值(在y轴上).例如,条形图可以用来形象地展示四种不同商品的价格情况,但不适宜用来展示商品价格随时间的变动趋势,因为这里时间是一个连续变量--尽管我们也可以这么做,后面会看到这种情形. 绘制条形图时需特别注意一个重要的细节:有时条形图的条形高度表示的是数据集中变量的频数,有时则表示变量取值本身.牢记这个区别--这里极易混淆,因为两者与数据集的对应关系不同,但又对应同样的术语.

《R数据可视化手册》一第2章 快速探索数据2.1 绘制散点图

第2章 快速探索数据 R数据可视化手册虽然本书中大部分图形都是通过ggplot2包绘制的,但这并不是R绘制图形的唯一方法.要快速探索数据,有时使用R基础包中的绘图函数会很有用.这些函数随R软件默认安装,无需另行安装附加包.它们简短易输入,处理简单问题时使用方便,且运行速度极快. 如果你想绘制较为复杂的图形,那么,转用ggplot2包通常是更好的选择.部分原因在于ggplot2提供了一个统一的接口和若干选项来替代基础绘图系统中对图形的修修补补和各种特例.一旦掌握了ggplot2的工作机制,你就可以

《R数据可视化手册》一第1章 R基础1.1 安装包

第1章 R基础 R数据可视化手册本章包括以下基础知识:安装包.使用包和加载数据. 如果你想快速上手,本书大多数技巧都需要安装ggplot2和gcookbook包.运行下面命令来安装: install.packages(c("ggplot2", "gcookbook"))然后,在每个R会话中,你需要在运行本书的例子之前先加载它们: library(ggplot2)library(gcookbook)附录A提供了一个关于ggplot2绘图包的简介,主要是面向不熟悉ggp

《R数据可视化手册》一导读

前 言 R数据可视化手册几年前读研时我开始用R,主要用来分析我在科研工作中收集到的数据.我使用R首先是想摆脱SPSS这样的统计软件的禁锢,即严格的环境和死板的分析.更何况,R是免费的,所以我用不着说服别人为我购买一套这样的软件--这对一个穷研究生来说是相当的重要!此后,随着我对R的了解不断深入,我才发现原来R还可以绘制出非常优秀.动人的数据图形. 本书的每个"技巧"中,都列出了一个问题和对应的解决方法.在大多数情况下,我提供的并不是R中唯一的实现方法,但却是我认为的最佳方案.R如此受欢

《R数据可视化手册》——导读

前言 R数据可视化手册几年前读研时我开始用R,主要用来分析我在科研工作中收集到的数据.我使用R首先是想摆脱SPSS这样的统计软件的禁锢,即严格的环境和死板的分析.更何况,R是免费的,所以我用不着说服别人为我购买一套这样的软件--这对一个穷研究生来说是相当的重要!此后,随着我对R的了解不断深入,我才发现原来R还可以绘制出非常优秀.动人的数据图形. 本书的每个"技巧"中,都列出了一个问题和对应的解决方法.在大多数情况下,我提供的并不是R中唯一的实现方法,但却是我认为的最佳方案.R如此受欢迎

《R数据可视化手册》——3.7 绘制堆积条形图

3.7 绘制堆积条形图 问题如何绘制堆积条形图? 方法使用geom_bar()函数,并映射一个变量给填充色参数(fill)即可.该命令会将Date对应到x轴上,并以Cultivar作为填充色,如图3-16所示. library(gcookbook) # 为了使用数据 ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) + geom_bar(stat="identity") 讨论弄清楚图形对应的数据结构有助于理解图形的绘制过

《R数据可视化手册》一2.3 绘制条形图

2.3 绘制条形图 问题如何绘制条形图? 方法对变量的值绘制条形图(见图2-5左图),可以使用barplot()函数,并向其传递两个向量作为参数,第一个向量用来设定条形的高度,第二个向量用来设定每个条形对应的标签(可选). 如果向量中的元素已被命名,则系统会自动使用元素的名字作为条形标签: barplot(BOD$demand, names.arg=BOD$Time) 有时候,"条形图"表示的是分组数据中各个元素的频数(见图2-5右图).这种条形图跟直方图有些类似,不过,其用离散取值的