贝叶斯推断及其互联网应用(三):拼写检查

(这个系列的第一部分介绍了贝叶斯定理,第二部分介绍了如何过滤垃圾邮件,今天是第三部分。)

使用Google的时候,如果你拼错一个单词,它会提醒你正确的拼法。

比如,你不小心输入了seperate。


Google告诉你,这个词是不存在的,正确的拼法是separate。


这就叫做"拼写检查"(spelling corrector)。有好几种方法可以实现这个功能,Google使用的是基于贝叶斯推断的统计学方法。这种方法的特点就是快,很短的时间内处理大量文本,并且有很高的精确度(90%以上)。Google的研发总监Peter Norvig,写过一篇著名的文章,解释这种方法的原理。

下面我们就来看看,怎么利用贝叶斯推断,实现"拼写检查"。其实很简单,一小段代码就够了。

一、原理

用户输入了一个单词。这时分成两种情况:拼写正确,或者拼写不正确。我们把拼写正确的情况记做c(代表correct),拼写错误的情况记做w(代表wrong)。

所谓"拼写检查",就是在发生w的情况下,试图推断出c。从概率论的角度看,就是已知w,然后在若干个备选方案中,找出可能性最大的那个c,也就是求下面这个式子的最大值。

  P(c|w)

根据贝叶斯定理:

  P(c|w) = P(w|c) * P(c) / P(w)

对于所有备选的c来说,对应的都是同一个w,所以它们的P(w)是相同的,因此我们求的其实是

  P(w|c) * P(c)

的最大值。

P(c)的含义是,某个正确的词的出现"概率",它可以用"频率"代替。如果我们有一个足够大的文本库,那么这个文本库中每个单词的出现频率,就相当于它的发生概率。某个词的出现频率越高,P(c)就越大。

P(w|c)的含义是,在试图拼写c的情况下,出现拼写错误w的概率。这需要统计数据的支持,但是为了简化问题,我们假设两个单词在字形上越接近,就有越可能拼错,P(w|C)就越大。举例来说,相差一个字母的拼法,就比相差两个字母的拼法,发生概率更高。你想拼写单词hello,那么错误拼成hallo(相差一个字母)的可能性,就比拼成haallo高(相差两个字母)。

所以,我们只要找到与输入单词在字形上最相近的那些词,再在其中挑出出现频率最高的一个,就能实现 P(w|c) * P(c) 的最大值。

二、算法

最简单的算法,只需要四步就够了。

第一步,建立一个足够大的文本库。

网上有一些免费来源,比如古登堡计划Wiktionary英国国家语料库等等。

第二步,取出文本库的每一个单词,统计它们的出现频率。

第三步,根据用户输入的单词,得到其所有可能的拼写相近的形式。

所谓"拼写相近",指的是两个单词之间的"编辑距离"(edit distance)不超过2。也就是说,两个词只相差1到2个字母,只通过----删除、交换、更改和插入----这四种操作中的一种,就可以让一个词变成另一个词。

第四步,比较所有拼写相近的词在文本库的出现频率。频率最高的那个词,就是正确的拼法。

根据Peter Norvig的验证,这种算法的精确度大约为60%-70%(10个拼写错误能够检查出6个。)虽然不令人满意,但是能够接受。毕竟它足够简单,计算速度极快。(本文的最后部分,将详细讨论这种算法的缺陷在哪里。)

三、代码

我们使用Python语言,实现上一节的算法。

第一步,把网上下载的文本库保存为big.txt文件。这步不需要编程。

第二步,加载Python的正则语言模块(re)和collections模块,后面要用到。

  import re, collections

第三步,定义words()函数,用来取出文本库的每一个词。

  def words(text): return re.findall('[a-z]+', text.lower())

lower()将所有词都转成小写,避免因为大小写不同,而被算作两个词。

第四步,定义一个train()函数,用来建立一个"字典"结构。文本库的每一个词,都是这个"字典"的键;它们所对应的值,就是这个词在文本库的出现频率。

  def train(features):

    model = collections.defaultdict(lambda: 1)

    for f in features:

      model[f] += 1

    return model

collections.defaultdict(lambda: 1)的意思是,每一个词的默认出现频率为1。这是针对那些没有出现在文本库的词。如果一个词没有在文本库出现,我们并不能认定它就是一个不存在的词,因此将每个词出现的默认频率设为1。以后每出现一次,频率就增加1。

第五步,使用words()和train()函数,生成上一步的"词频字典",放入变量NWORDS。

  NWORDS = train(words(file('big.txt').read()))

第六步,定义edits1()函数,用来生成所有与输入参数word的"编辑距离"为1的词。

  alphabet = 'abcdefghijklmnopqrstuvwxyz'

  def edits1(word):

    splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

    deletes = [a + b[1:] for a, b in splits if b]

    transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1]

    replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]

    inserts = [a + c + b for a, b in splits for c in alphabet]

    return set(deletes + transposes + replaces + inserts)

edit1()函数中的几个变量的含义如下:

  (1)splits:将word依次按照每一位分割成前后两半。比如,'abc'会被分割成 [('', 'abc'), ('a', 'bc'), ('ab', 'c'), ('abc', '')] 。

  (2)beletes:依次删除word的每一位后、所形成的所有新词。比如,'abc'对应的deletes就是 ['bc', 'ac', 'ab'] 。

  (3)transposes:依次交换word的邻近两位,所形成的所有新词。比如,'abc'对应的transposes就是 ['bac', 'acb'] 。

  (4)replaces:将word的每一位依次替换成其他25个字母,所形成的所有新词。比如,'abc'对应的replaces就是 ['abc', 'bbc', 'cbc', ... , 'abx', ' aby', 'abz' ] ,一共包含78个词(26 × 3)。

  (5)inserts:在word的邻近两位之间依次插入一个字母,所形成的所有新词。比如,'abc' 对应的inserts就是['aabc', 'babc', 'cabc', ..., 'abcx', 'abcy', 'abcz'],一共包含104个词(26 × 4)。

最后,edit1()返回deletes、transposes、replaces、inserts的合集,这就是与word"编辑距离"等于1的所有词。对于一个n位的词,会返回54n+25个词。

第七步,定义edit2()函数,用来生成所有与word的"编辑距离"为2的词语。

  def edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1))

但是这样的话,会返回一个 (54n+25) * (54n+25) 的数组,实在是太大了。因此,我们将edit2()改为known_edits2()函数,将返回的词限定为在文本库中出现过的词。

  def known_edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)

第八步,定义correct()函数,用来从所有备选的词中,选出用户最可能想要拼写的词。

  def known(words): return set(w for w in words if w in NWORDS)

  def correct(word):

    candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]

    return max(candidates, key=NWORDS.get)

我们采用的规则为:

  (1)如果word是文本库现有的词,说明该词拼写正确,直接返回这个词;

  (2)如果word不是现有的词,则返回"编辑距离"为1的词之中,在文本库出现频率最高的那个词;

  (3)如果"编辑距离"为1的词,都不是文本库现有的词,则返回"编辑距离"为2的词中,出现频率最高的那个词;

  (4)如果上述三条规则,都无法得到结果,则直接返回word。

至此,代码全部完成,合起来一共21行。

  import re, collections

  def words(text): return re.findall('[a-z]+', text.lower())

  def train(features):

    model = collections.defaultdict(lambda: 1)

    for f in features:

      model[f] += 1

    return model

  NWORDS = train(words(file('big.txt').read()))

  alphabet = 'abcdefghijklmnopqrstuvwxyz'

  def edits1(word):

    splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

    deletes = [a + b[1:] for a, b in splits if b]

    transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1]

    replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]

    inserts = [a + c + b for a, b in splits for c in alphabet]

    return set(deletes + transposes + replaces + inserts)

  def known_edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)

  def known(words): return set(w for w in words if w in NWORDS)

  def correct(word):

    candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]

    return max(candidates, key=NWORDS.get)

使用方法如下:

  >>> correct('speling')

  'spelling'

  >>> correct('korrecter')

  'corrector'

四、缺陷

我们使用的这种算法,有一些缺陷,如果投入生产环境,必须在这些方面加入改进。

(1)文本库必须有很高的精确性,不能包含拼写错误的词。

如果用户输入一个错误的拼法,文本库恰好包含了这种拼法,它就会被当成正确的拼法。

(2)对于不包含在文本库中的新词,没有提出解决办法。

如果用户输入一个新词,这个词不在文本库之中,就会被当作错误的拼写进行纠正。

(3)程序返回的是"编辑距离"为1的词,但某些情况下,正确的词的"编辑距离"为2。

比如,用户输入reciet,会被纠正为recite(编辑距离为1),但用户真正想要输入的词是receipt(编辑距离为2)。也就是说,"编辑距离"越短越正确的规则,并非所有情况下都成立。

(4)有些常见拼写错误的"编辑距离"大于2。

这样的错误,程序无法发现。下面就是一些例子,每一行前面那个词是正确的拼法,后面那个则是常见的错误拼法。

purple perpul
curtains courtens
minutes muinets
successful sucssuful
inefficient ineffiect
availability avaiblity
dissension desention
unnecessarily unessasarily
necessary nessasary
unnecessary unessessay
night nite
assessing accesing
necessitates nessisitates

(5)用户输入的词的拼写正确,但是其实想输入的是另一个词。

比如,用户输入是where,这个词拼写正确,程序不会纠正。但是,用户真正想输入的其实是were,不小心多打了一个h。

(6)程序返回的是出现频率最高的词,但用户真正想输入的是另一个词。

比如,用户输入ther,程序会返回the,因为它的出现频率最高。但是,用户真正想输入的其实是their,少打了一个i。也就是说,出现频率最高的词,不一定就是用户想输入的词。

(7)某些词有不同的拼法,程序无法辨别。

比如,英国英语和美国英语的拼法不一致。英国用户输入'humur',应该被纠正为'humour';美国用户输入'humur',应该被纠正为'humor'。但是,我们的程序会统一纠正为'humor'。

(完)

时间: 2024-10-26 23:17:45

贝叶斯推断及其互联网应用(三):拼写检查的相关文章

贝叶斯推断及其互联网应用(一):定理简介

一年前的这个时候,我正在翻译Paul Graham的<黑客与画家>. 那本书的第八章,写了一个非常具体的技术问题----如何使用贝叶斯推断过滤垃圾邮件(英文版). 我没完全看懂那一章.当时是硬着头皮,按照字面意思把它译出来的.虽然译文质量还可以,但是心里很不舒服,下决心一定要搞懂它. 一年过去了,我读了一些概率论文献,逐渐发现贝叶斯推断并不难.原理的部分相当容易理解,不需要用到高等数学. 下面就是我的学习笔记.需要声明的是,我并不是这方面的专家,数学其实是我的弱项.欢迎大家提出宝贵意见,让我们

贝叶斯推断及其互联网应用(二)过滤垃圾邮件

上一次,我介绍了贝叶斯推断的原理,今天讲如何将它用于垃圾邮件过滤. ======================================== 贝叶斯推断及其互联网应用 作者:阮一峰 (接上文) 七.什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户. 正确识别垃圾邮件的技术难度非常大.传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等.前者的过滤依据是特定的词语:后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比.它们的

贝叶斯推断及其互联网应用(一)定理简介

一年前的这个时候,我正在翻译Paul Graham的<黑客与画家>. 那本书的第八章,写了一个非常具体的技术问题----如何使用贝叶斯推断过滤垃圾邮件(英文版). 我没完全看懂那一章.当时是硬着头皮,按照字面意思把它译出来的.虽然译文质量还可以,但是心里很不舒服,下决心一定要搞懂它. 一年过去了,我读了一些概率论文献,逐渐发现贝叶斯推断并不难.原理的部分相当容易理解,不需要用到高等数学. 下面就是我的学习笔记.需要声明的是,我并不是这方面的专家,数学其实是我的弱项.欢迎大家提出宝贵意见,让我们

贝叶斯推断及其互联网应用(二):过滤垃圾邮件

上一次,我介绍了贝叶斯推断的原理,今天讲如何将它用于垃圾邮件过滤. ======================================== 贝叶斯推断及其互联网应用 作者:阮一峰 (接上文) 七.什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户. 正确识别垃圾邮件的技术难度非常大.传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等.前者的过滤依据是特定的词语:后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比.它们的

贝叶斯推断及其互联网应用(三)拼写检查

(这个系列的第一部分介绍了贝叶斯定理,第二部分介绍了如何过滤垃圾邮件,今天是第三部分.) 使用Google的时候,如果你拼错一个单词,它会提醒你正确的拼法. 比如,你不小心输入了seperate. Google告诉你,这个词是不存在的,正确的拼法是separate. 这就叫做"拼写检查"(spelling corrector).有好几种方法可以实现这个功能,Google使用的是基于贝叶斯推断的统计学方法.这种方法的特点就是快,很短的时间内处理大量文本,并且有很高的精确度(90%以上).

浅谈贝叶斯推断

一.什么是贝叶斯推断 贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质.它是贝叶斯定理(Bayes' theorem)的应用.英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理. 贝叶斯推断与其他统计学推断方法截然不同.它建立在主观判断的基础上,也就是说,你可以不需要客观证据,先估计一个值,然后根据实际结果不断修正.正是因为它的主观性太强,曾经遭到许多统计学家的诟病. 贝叶斯推断需要大量的计算,因此历史

《贝叶斯方法:概率编程与贝叶斯推断》——导读

前言 贝叶斯方法:概率编程与贝叶斯推断 贝叶斯方法是一种常用的推断方法,然而对读者来说它通常隐藏在乏味的数学分析章节背后.关于贝叶斯推断的书通常包含两到三章关于概率论的内容,然后才会阐述什么是贝叶斯推断.不幸的是,由于大多数贝叶斯模型在数学上难以处理,这些书只会为读者展示简单.人造的例子.这会导致贝叶斯推断给读者留下"那又如何?"的印象.实际上,这曾是我自己的先验观点. 最近贝叶斯方法在一些机器学习竞赛上取得了成功,让我决定再次研究这一主题.然而即便以我的数学功底,我也花了整整3天时间

《贝叶斯方法:概率编程与贝叶斯推断》——1.1 引言

1.1 引言 尽管你已是一个编程老手,但bug仍有可能在代码中存在.于是,在实现了一段特别难的算法之后,你决定先来一个简单的测试用例.这个用例通过了.接着你用了一个稍微复杂的测试用例.再次通过了.接下来更难的测试用例也通过了.这时,你开始觉得也许这段代码已经没有bug了. 如果你这样想,那么恭喜你:你已经在用贝叶斯的方式思考!简单地说,贝叶斯推断是通过新得到的证据不断地更新你的信念.贝叶斯推断很少会做出绝对的判断,但可以做出非常可信的判断.在上面的例子中,我们永远无法100%肯定我们的代码是无缺

《贝叶斯方法:概率编程与贝叶斯推断》——1.4 使用计算机执行贝叶斯推断

1.4 使用计算机执行贝叶斯推断 接下来模拟一个有趣的实例,它是一个有关用户发送和收到短信的例子. 1.4.1 实例:从短信数据推断行为 你得到了系统中一个用户每天的短信条数数据,如图1.4.1中所示.你很好奇这个用户的短信使用行为是否随着时间有所改变,不管是循序渐进地还是突然地变化.怎么模拟呢?(这实际上是我自己的短信数据.尽情地判断我的受欢迎程度吧.) figsize(12.5, 3.5) count_data = np.loadtxt("data/txtdata.csv") n_