同步-互斥量 临界区 信号量 条件变量 效率对比

问题描述

互斥量 临界区 信号量 条件变量 效率对比

windows 下,如下四种同步方式中,互斥量 临界区 信号量 条件变量,
效率对比,求指导,谢谢

解决方案

据我自己在windows下的测试,信号量比条件变量高效,大概是其6倍

解决方案二:

条件变量效率应该最高,但是可能不是那么线程安全
临界区效率第二好

解决方案三:

临界区(Critical Section)(同一个进程内,实现互斥)
保证在某一时刻只有一个线程能访问数据的简便办法。在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操作共享资源的目的。
互斥量(Mutex)(可以跨进程,实现互斥)
互斥量跟临界区很相似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。互斥量比临界区复杂。因为使用互斥不仅仅能够在同一应用程序不同线程中实现资源的安全共享,而且可以在不同应用程序的线程之间实现对资源的安全共享。
互斥量与临界区的作用非常相似,但互斥量是可以命名的,也就是说它可以跨越进程使用。所以创建互斥量需要的资源更多,所以如果只为了在进程内部是用的话使用临界区会带来速度上的优势并能够减少资源占用量。
信号量(Semaphores)(主要是实现同步,可以跨进程)
信号量对象对线程的同步方式与前面几种方法不同,信号允许多个线程同时使用共享资源,这与操作系统中的PV操作相同。它指出了同时访问共享资源的线程最大数目。它允许多个线程在同一时刻访问同一资源,但是需要限制在同一时刻访问此资源的最大线程数目。一般是将当前可用资源计数设置为最大资源计数,每增加一个线程对共享资源的访问,当前可用资源计数就会减1,只要当前可用资源计数是大于0的,就可以发出信号量信号。但是当前可用计数减小到0时则说明当前占用资源的线程数已经达到了所允许的最大数目,不能在允许其他线程的进入,此时的信号量信号将无法发出
事件(Event)(实现同步,可以跨进程)
事件对象也可以通过通知操作的方式来保持线程的同步。并且可以实现不同进程中的线程同步操作。

解决方案四:

几种模式的机制不同,有些是实现同步的,跨进程的,有些是进程内实现互斥的,不能简单比较。
要看你的场景确定采用什么技术

时间: 2024-10-30 16:04:18

同步-互斥量 临界区 信号量 条件变量 效率对比的相关文章

二、(LINUX 线程同步) 互斥量、条件变量以及生产者消费者问题

原创转载请注明出处: 接上一篇: 一.(LINUX 线程同步) 引入  http://blog.itpub.net/7728585/viewspace-2137980/ 在线程同步中我们经常会使用到mutex互斥量,其作用用于保护一块临界区,避免多线程并发操作对这片临界区带来的数据混乱, POSIX的互斥量是一种建议锁,因为如果不使用互斥量也可以访问共享数据,但是可能是不安全的. 其原语包含: pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; 

临界区、互斥量、信号量

1.临界区:通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问. 2.互斥量:为协调共同对一个共享资源的单独访问而设计的. 3.信号量:为控制一个具有有限数量用户资源而设计. 临界区(Critical Section) 保证在某一时刻只有一个线程能访问数据的简便办法.在任意时刻只允许一个线程对共享资源进行访问.如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开.临界区在被释放后,其他线程可以继续抢占

Linux线程管理必备:解析互斥量与条件变量的详解_C 语言

   做过稍微大一点项目的人都知道,力求程序的稳定性和调度的方便,使用了大量的线程,几乎每个模块都有一个专门的线程处理函数.而互斥量与条件变量在线程管理中必不可少,任务间的调度几乎都是由互斥量与条件变量控制.互斥量的实现与进程中的信号量(无名信号量)是类似的,当然,信号量也可以用于线程,区别在于初始化的时候,其本质都是P/V操作.编译时,记得加上-lpthread或-lrt哦.    有关进程间通信(消息队列)见:进程间通信之深入消息队列的详解 一.互斥量 1. 初始化与销毁:    对于静态分

UNIX环境高级编程:线程同步之互斥锁、读写锁和条件变量

一.使用互斥锁 1.初始化互斥量 pthread_mutex_t mutex =PTHREAD_MUTEX_INITIALIZER;//静态初始化互斥量 int pthread_mutex_init(pthread_mutex_t*mutex,pthread_mutexattr_t*attr);//动态初始化互斥量 int pthread_mutex_destory(pthread_mutex_t*mutex);//撤销互斥量 不能拷贝互斥量变量,但可以拷贝指向互斥量的指针,这样就可以使多个函数

并发编程(一): POSIX 使用互斥量和条件变量实现生产者/消费者问题

    boost的mutex,condition_variable非常好用.但是在Linux上,boost实际上做的是对pthread_mutex_t和pthread_cond_t的一系列的封装.因此通过对原生态的POSIX 的mutex,cond的生成者,消费者的实现,我们可以再次体会boost带给我们的便利. 1. 什么是互斥量        互斥量从本质上说是一把锁,在访问共享资源前对互斥量进行加锁,在访问完成后释放互斥量上的锁.对互斥量进行加锁以后,任何其他试图再次对互斥量加锁的线程将

UNIX环境高级编程:线程同步之条件变量及属性

条件变量变量也是出自POSIX线程标准,另一种线程同步机制.主要用来等待某个条件的发生.可以用来同步同一进程中的各个线程.当然如果一个条件变量存放在多个进程共享的某个内存区中,那么还可以通过条件变量来进行进程间的同步. 每个条件变量总是和一个互斥量相关联,条件本身是由互斥量保护的,线程在改变条件状态之间必须要锁住互斥量.条件变量相对于互斥量最大的优点在于允许线程以无竞争的方式等待条件的发生.当一个线程获得互斥锁后,发现自己需要等待某个条件变为真,如果是这样,该线程就可以等待在某个条件上,这样就不

Linux线程同步之条件变量

条件变量是线程可用的另一种同步机制.条件变量给多个线程提供了一个会合的场所.条件本身是由互斥量保护的.线程在改变 条件状态前必须首先锁住互斥量. 条件变量的初始化 pthread_cond_init 去除初始化 pthread_cond_destroy 等待 pthread_cond_wait 满足条件给向进程发送信号 pthread_cond_signal 下面程序展示了利用条件变量等待另外两个线程满足条件时,第三个进程继续向前执行 #include <stdio.h> #include &

3线程同步:条件变量

1条件变量 条件变量给多个线程提供了一个汇合的场所. 依赖的头文件 #include<pthread.h> 函数声明 定义分配条件变量 pthread_cond_t cond =PTHREAD_COND_INITIALIZER;   int pthread_cond_init(pthread_cond_t*restrict cond, const pthread_condattr_t *restrict attr); 名称: pthread_cond_init 功能: initialize c

互斥量的使用&lt;转&gt;

1.预备知识   临界区非常适合同一进程中对数据的串行访问,它的速度很快.然而,也许你想要使某些应用程序与机器中的其它事件或者其它进程取得同步,这时你就要使用一些核心对象来同步线程.核心对象包括: .进程 .线程 .文件 .文件变化通知(File Change notification) .控制台输入(Console input) .互斥量(Mutex) .信号量(Semaphore) .事件(Event)   每个对象在任何时候都可以处于两种状态之一:有信号(Signaled)和无信号(not