概述
最近要做一个实时分析的项目,所以需要深入一下storm。
为什么storm
综合下来,有以下几点:
1. 生逢其时
MapReduce 计算模型打开了分布式计算的另一扇大门,极大的降低了实现分布式计算的门槛。有了MapReduce架构的支持,开发者只需要把注意力集中在如何使用 MapReduce的语义来解决具体的业务逻辑,而不用头疼诸如容错,可扩展性,可靠性等一系列硬骨头。一时间,人们拿着MapReduce这把榔头去敲 各种各样的钉子,自然而然的也试图用MapReduce计算模型来解决流处理想要解决的问题。各种失败的尝试之后,人们意识到,改良MapReduce并 不能使之适应于流处理的场景,必须发展出全新的架构来完成这一任务(MapReduce不适合做流处理的原因Yahoo!在其S4的介绍论文里面有比较详 细的阐述,而UCBerkeley的SparkStreaming项目现在正在尝试挑战这一结论,感兴趣的同志请自行查看)。另一方面,人们对传统的 CEP解决方案心存疑虑,认为其非分布式的架构可扩展性不够,无法scaleout来满足海量的数据处理要求。这时候,Yahoo!的S4以及 Twitter的Storm恰到好处的挠到了人们的痒处。
2. 可扩展性
更加明确的说,是scaleout的能力。所谓Scale out (http://en.wikipedia.org/wiki/Scalability), 简单来说就是当一个集群的处理能力不够用的时候,只要往里面再追加一些新的节点,计算有能力迁移到这些新的节点来满足需要。可能的情况下,选择 Scaleout 而非Scale up,这个观念已经深入人心。一般来说,实现Scaleout的关键是Shared nothing architecture,即计算所需要的各种状态都是自满足的,不存在对特定节点强依赖,这样,计算就可以很容易的在节点间迁移,整个系统计算能力不够 用的时候,加入新的节点就可以了。Storm的计算模型本身是Scaleout友好的,Topology 对应的Spout和Bolt并不需要和特定节点绑定,可以很容易的分布在多个节点上。此外,Storm还提供了一个非常强大的命令 (rebalance),可以动态调整特定Topology中各组成元素(Spout/Bolt)的数量以及其和实际计算节点的对应关系。
3. 系统可靠性
Storm 这个分布式流计算框架是建立在Zookeeper的基础上的,大量系统运行状态的元信息都序列化在Zookeeper中。这样,当某一个节点出错时,对应 的关键状态信息并不会丢失,换言之Zookeeper的高可用保证了Storm的高可用。文档(https://github.com /nathanmarz/storm/wiki/Fault-tolerance)讨论了Storm各个子系统的错误冗余行为,可以进一步参考。
4. 计算的可靠性
分 布式计算涉及到多节点/进程之间的通信和依赖,正确的维护所有参与者的状态和依赖关系,是一件非常有挑战性的任务。Storm实现了一整套机制,确保消息 会被完整处理(https://github.com/nathanmarz/storm/wiki/Guaranteeing-message- processing)。 此外,通过TransactionalTopology(https://github.com/nathanmarz/storm/wiki /Transactional-topologies) ,Storm可以保证每个tuple“被且仅被处理一次”。
5. Opensource
这个就不用多说了,开源使得Storm社区及其活跃,到本文写作的时候,Storm已经发展到了0.81,Storm的使用者已经有了一个长长的名单(https://github.com/nathanmarz/storm/wiki/Powered-By),其中不乏比如淘宝,支付宝,Twitter,Groupon这种互联网巨头。
6. Clojure基础上的实现
Storm的核心代码是Clojure和Java。Clojure是一门JVM基础上的函数式编程语言(http://clojure.org/), 是支持STM(SoftwareTransactional Memory)的少数几门语言之一。Clojure推出以来,得到了广泛关注,人们普遍认为,其函数式编程所具有的各种特性能在分布式环境中大有用武之 地, 而Storm则给出了一个很好的实例。从另一个角度来说,Storm也能大大的推动Clojure的普及。
总言之,时势造英雄,Storm在正确的时间出现在了正确的地点,而且刚刚好做了正确的事情,想不红都没有道理。
高层架构
从高来看storm的架构:
云计算(1) storm-云计算 storm">
查看本栏目更多精彩内容:http://www.bianceng.cnhttp://www.bianceng.cn/Servers/cloud-computing/