[数分提高]2014-2015-2第10教学周第2次课 (2015-05-07)

试判断 $$\bex \int_{-\infty}^{+\infty}x^ne^{-\sex{x^2+\frac{1}{x^2}}}\rd x\quad(n\in\bbN) \eex$$ 的敛散性.

解答: $$\bex \int_{-\infty}^{+\infty}x^ne^{-\sex{x^2+\frac{1}{x^2}}}\rd x =\int_{-\infty}^{-1}+\int_{-1}^0 +\int_0^1+\int_1^{+\infty} x^ne^{-\sex{x^2+\frac{1}{x^2}}}\rd x =I_1+I_2+I_3+I_4. \eex$$ 对 $I_1,I_4$, 由 $$\bex |x^ne^{-\sex{x^2+\frac{1}{x^2}}}| \leq |x|^n e^{-|x|^2}, \quad \lim_{|x|\to \infty} \frac{|x|^ne^{-|x|^2}}{1/|x|^2} =\lim_{t\to+\infty} \frac{t^{n+2}}{e^{t^2}}=0 \eex$$ 及比较判别法即知 $I_1,I_4$ 绝对收敛. 而对 $I_2,I_3$, 由 $$\bex \vlm{x} x^ne^{-\sex{x^2+\frac{1}{x^2}}}=0 \eex$$ 知被积函数延拓定义 $x=0$ 后在 $[-1,1]$ 上连续. 综上, 原反常积分绝对收敛.

 

试证: $$\bex 0\leq f\in C(0,\infty),\ \int_0^\infty f(x)\rd x<\infty \ra \vlm{n}\frac{1}{n}\int_0^n f(x)\rd x=0. \eex$$ 

证明: 由 $$\bex 0\leq f\in C(0,\infty),\ \int_0^\infty f(x)\rd x<\infty \eex$$ 及 Cauchy 收敛原理知 $$\bex {\color{red}\forall\ \ve>0,}\ \exists\ N_1,\st n\geq N_1\ra \int_{N_1}^n f(x)\rd x<\frac{\ve}{2}. \eex$$ 又对该 $N_1$, 由 $$\bex \vlm{n}\frac{1}{n}\int_0^{N_1} f(x)\rd x=0 \eex$$ 知 $$\bex {\color{red}\exists\ N}>N_1,\st n\geq N\ra \frac{1}{n}\int_0^{N_1} f(x)\rd x<\frac{\ve}{2}. \eex$$ 于是 $$\bex {\color{red}n\geq N\ra \frac{1}{n}\int_0^n f(x)\rd x =\frac{1}{n}\int_0^{N_1} f(x)\rd x +\frac{1}{n}\int_{N_1}^n f(x)\rd x <\ve.} \eex$$

时间: 2024-09-20 18:23:12

[数分提高]2014-2015-2第10教学周第2次课 (2015-05-07)的相关文章

[数分提高]2014-2015-2第10教学周第1次课 (2015-05-04)

1. $$\bex \al\in\bbR\ra \int_0^\infty \frac{\rd x}{(1+x^2)(1+x^\al)}=? \eex$$ 解答: $$\beex \bea \int_0^\infty \frac{\rd x}{(1+x^2)(1+x^\al)}&=\int_0^1\cdots+\int_1^\infty\cdots\\ &=\int_1^\infty \frac{x^\al \rd x}{\cdots}+\int_1^\infty \frac{\rd x}

[数分提高]2014-2015-2第9教学周第1次课 (2015-04-28)

设 $$\bex a,b>0,\quad 0\leq f\in \calR[a,b],\quad \int_a^b xf(x)\rd x=0. \eex$$ 试证: $$\bex \int_a^b x^2f(x)\rd x\leq ab \int_a^b f(x)\rd x; \eex$$ 并给出使得下列不等式成立的 (您认为的) 最优数: $$\bex \int_a^b x^3f(x)\rd x\leq (\quad) \int_a^b f(x)\rd x. \eex$$   解答: 由 $$

[数分提高]2014-2015-2第1教学周第1次课

求极限 $$\bex \vlm{n}\dfrac{(n^2+1)(n^2+2)\cdots(n^2+n)}{(n^2-1)(n^2-2)\cdots(n^2-n)}. \eex$$       解答: 还记得对数不等式么: $$\bex \dfrac{x}{1+x}<\ln(1+x)<x,\quad x>0. \eex$$ 我们有 $$\beex \bea \ln\dfrac{n^2+i}{n^2-i}&=\ln\sex{1+\dfrac{2i}{n^2-i}} <\dfr

[数分提高]2014-2015-2第6教学周第2次课(2015-04-09)

试求 $$\bex \max\sed{\al;\sex{1+\frac{1}{n}}^{n+\al}\leq e,\quad \forall\ n\in\bbN}. \eex$$   解答: $$\beex \bea &\quad \sex{1+\frac{1}{n}}^{n+\al}\leq e,\quad\forall\ n\in\bbN\\ &\lra (n+\al)\ln\sex{1+\frac{1}{n}}\leq 1,\quad\forall\ n\in\bbN\\ &

[数分提高]2014-2015-2第6教学周第2次课讲义 3.4 导数的综合应用

  1. 试证: $$\bex \frac{|a+b|}{1+|a+b|} \leq \frac{|a|}{1+|a|} +\frac{|b|}{1+|b|}. \eex$$   2. 试证: (1). $$\bex 0<x<1\ra x-\frac{1}{x}<2\ln x. \eex$$ (2). 设 $f$ 在 $(0,\infty)$ 上 $\searrow$, 可导, $$\bex x\in (0,\infty)\ra 0<f(x)<|f'(x)|, \eex$$

[数分提高]2014-2015-2第8教学周第2次课 (2015-04-23)

设 $f\in C[a,b]$, 则 $$\bex \exists\ \xi\in (a,b),\st \int_a^b f(x)\rd x=f(\xi)(b-a). \eex$$   证明: 记 $$\bex F(x)=\int_a^xf(t)\rd t, \eex$$ 则 $$\bex \int_a^bf(x)\rd x=F(b)=F(b)-F(a)=F'(\xi)(b-a)=f(\xi)(b-a). \eex$$

[数分提高]2014-2015-2第7教学周第1次课讲义 4.1 积分与极限

1. $$\bex \vlm{n}\sex{\frac{1}{n+1}+\cdots+\frac{1}{2n}}. \eex$$ 2. 对 $\al,\beta\neq -1$, 求 $$\bex \vlm{n}\frac{[1^\al+3^\al+\cdots+(2n+1)^\al]^{\beta+1}}{[2^\beta+4^\beta+\cdots+(2n)^\beta]^{\al+1}}. \eex$$ 3. $$\bex \vlm{n}\int_0^\frac{\pi}{2} \sin

[数分提高]2014-2015-2第3教学周第2次课

求极限 $$\bex \vlm{n}\frac{1^k+2^k+\cdots+n^k}{n^{k+1}},\quad \vlm{n}\sex{\frac{1^k+2^k+\cdots+n^k}{n^{k}}-\frac{n}{k+1}}. \eex$$   解答: $$\beex \bea \mbox{第一个极限}&=\vlm{n}\frac{(n+1)^k}{(n+1)^{k+1}-n^{k+1}}\quad\sex{\mbox{Stolz  公式}}\\ &=\vlm{n}\frac{

[数分提高]2014-2015-2第9教学周第2次课 (2015-04-30)

1. 试证: $$\bex a,b\geq 1\ra ab\leq e^{a-1}+b\ln b. \eex$$ 证明: 还记得 Young 不等式么? 直接令 $f(x)=e^x-1$, $f^{-1}(y)=\ln (1+y)$, 而 $$\bex (x-1)(y-1)\leq \int_0^{x-1}(e^t-1)\rd t +\int_0^{y-1}\ln(1+t)\rd t =1+e^{x-1}-x-y+y\ln y. \eex$$ (当然, 您也可以按照 Young 不等式的证明方法