一起谈.NET技术,MEF——.NET中值得体验的精妙设计

  MEF(Managed Extensibility Framework)是.NET Framework 4.0一个重要的库,Visual Studio 2010 Code Editor的扩展支持也是基于MEF构建的。MEF的目标是简化创建可扩展的应用程序,其核心类是ComposablePart,即具有组合能力的组件,每一个称为ComposablePart(中文可为可组合构件,不过下文一直采用英文来表示,这样比较贴切)的组件可以组合(称为Import)其它组件的功能(其它组件通过声明Export提供功能)并且它也可以通过定义Export将其功能暴露给其它组件。

  ComposablePart通过组件目录(ComposablePartCatalog)来搜索发现需要的功能,组件目录可以是一个物理文件目录、网络存储等。每一个ComposablePart还具备动态组合的能力,在必要的情况下可以重新组合功能。本文将采用自底向上的思路体验一下MEF的设计思想。

  1、无废话MEF

  MEF的核心是可组合组件ComposablePart,它由ComposablePartDefintion来描述和创建。每一个可组合组件通过定义ExportDefintion向其它组件提供功能,通过ImportDefinition引用其它组件的功能,通过Metadata来描述组件自身的信息。在创建一个ComposablePart组件后,通过在组件目录(ComposableCatalog)搜索需要的功能实现组件组合。

  2、典型的MEF组合过程

  (1)创建组件目录(如AssemblyCatalog)

  (2)创建组合容器CompositionContainer,组件容器通过组件目录搜索组件的定义

  (3)创建一个组件

  (4)从组件容器获取其它组件功能的定义,然后执行匹配组合

  示例代码如下:


1. var catalog = new AssemblyCatalog(Assembly.GetExecutingAssembly()); //创建一个程序集目录,用于从一个程序集获取所有的组件定义
2. var container = new CompositionContainer(catalog); //创建一个组合容器
3. var composablePart = new MyComponent();
4. container.ComposeParts(composablePart); //执行组合,从容器中获取ExportDefinition并创建实例组合在一起
5. // composablePart组合完成以供使用

  其原理如下图(来自mef.codeplex.com官方网站):

  3 MEF本质组合基元

  组合基元是对提供具有可扩展、可组合能力的组件的本质支持,它处于MEF的最底层,是整个Framework的核心类,由6个类构成,如下图所示(该图来自MEF白皮书,白皮书有点抽象,不过看起来很过瘾,后面附上本人翻译的中文版)。

  组合基元类的描述如下:

  (1)ComposablePart:即可组合组件,是组合基元的核心类。ExportDefinitions表示该组件提供的功能的描述;而ImportDefinitions则是对引用其它组件功能的约束的描述。Metadata是对组件自身的特殊标识,当一个ComposablePart通过Import引用其它组件功能时,元数据可能作为满足引用功能的约束的一个条件。

  (2)ExportDefinition:定义ComposablePart向其它组件提供的功能,这个功能使用一个ContactName和Metadata来描述。ContactName即使用这个功能的契约,Metadata用于进一步描述这个功能。

  (3)ImportDefinition:定义ComposablePart对其它组件提供的功能的引用,即引用了另一个组件的Exports。ImportDefintion使用一个表达式来描述约束,它在Constraint这个属性定义,其类型为Expression>。这个表达式用于对一个ExportDefintion做匹配判定,其匹配方法如下:

  以下是代码片段:


1. var allExportDefs = …// 从ComposablePartCatalog获取所有ExportDefinition
2. var constraintDelegate= Constraint.Compile(); //编译成匹配函数的代理
3. var satisfiedExportDefs = allExportDefs .FindAll(constraintDelegate); //使用匹配函数的代理来过滤所有的ExportDefs

  (4)ComposableDefinition:即ComposablePart定义,是ComposablePart的工厂,该类定义了一类ComposablePart引用的功能、暴露的功能及其自身的元数据。引用的功能在ImportDefinitions中描述,暴露的功能通过ExportDefinitions描述。而Metadata则是对组件自身的描述,在MEF中一般用于在一个组件引用(Import)另一个组件功能时,通过对另一个组件的元数据进行匹配,从而来确定是否要组合另一个组件提供的功能。该类是ComposablePart的工厂,提供了CreatePart方法。

  (5)ComposablePartCatalog:可组合组件目录,用于发现组件,这些组件可能来自物理目录、网络存储等。

  4 、如何使用MEF

  在上面,我们描述了MEF的核心组合基元,组合基元听起来很简单,很容易理解,但是想直接使用组合基元来编写一个ComposablePartDefinition却不是那么容易了,在MEF的实现,这些类都是一些抽象类,用于描述整个可扩展框架的模型。我先不想说明白MEF到底是如何来使用组合基元,先看示例好了。

  4.1 定义ComposablePartDefinition

  MEF通过引入一个基于特性的编程模型来简化ComposablePart的定义,如下所示的MessageSender和Processor类均是ComposablePart定义。

  以下是代码片段:


1. public class MessageSender
2. {
3. [Export("MessageSender")]
4. public void Send(string message)
5. {
6. Console.WriteLine(message);
7. }
8. }
9. [Export]
10. public class Processor
11. {
12. [Import("MessageSender")]
13. public Action MessageSender { get; set; }
14. public void Send()
15. {
16. MessageSender("Processed");
17. }
18. }

  4.2、 创建ComposablePart

  以下是代码片段:


1. var catalog = new AssemblyCatalog(Assembly.GetExecutingAssembly()); //创建一个程序集目录,用于从一个程序集获取所有的组件定义
2. var assemblyCatalog = new AssemblyCatalog(Assembly.GetExecutingAssembly()); //创建组件目录
3. var container = new CompositionContainer(assemblyCatalog); //创建组合容器
4. var processorPart = new Processor();
5. container.ComposeParts(processorPart); //执行组合
6. processorPart.Send();
7. Console.ReadLine();

  4.3 、基于特性编程模型的本质

  通过4.1和4.2的示例可以发现,MessageSender和Processor这两个类型就是ComposablePartDefintion的实现,在这两个类型,我们通过Export和Import(ImportMany)特性来定义暴露的功能和引用的功能。  CompositionContainer通过这两个类所在的程序集的组件目录来搜索所有的可组合组件定义,然后在执行组合时利用这些定义创建Export对象,根据Import声明的约束契约实现组件的组合。

  在这个编程模型里面,它允许我们:(1)使用传统OOP的类型定义来定义一个ComposablePartDefinition,毋庸置疑,这基本没有引入复杂的概念;(2)使用Export/Import/ImportMany等元数据来声明组合功能,非常的简单且容易理解。

  CompositionContainer将会在后台构建这个Part对应的ComposablePartDefinition以及组件目录其它ComposablePartDefinition,在执行组合时,利用Definition创建实例执行组合。

  5、 MEF vs MAF vs Unity

  在刚学习MEF时,经常会问一个问题,那就是MEF和MAF这样的插件框架、和Unity这样的IoC框架到底有什么区别。MEF与MAF(Managed Addin Framework)最大不同在于:前者关注使用非常简单的方式来支持具有很强灵活性的可扩展支持,后者关注具有物理隔离、安全、多版本支持的插件平台架构;MEF和Unity不同在于:前者强调组合,后者强调依赖注入。

  6、 MEF总结

  MEF有3点让我非常的深刻,首先是组合基元的设计,其次是基于特性的编程模型,最后是MEF的实现方法。

组合基元是可扩展支持的本质,它看起来显得非常的简单,但却有能够支持强大的功能能力并且不失灵活性。大道至简,不过,简的程度确实因人而异,MEF的简实在让人佩服得五体投地。这个Framework也是除了ObjectBuilder之外让我非常喜欢的框架,查看其代码真是让人无比舒畅。

  天人之作啊!这帮人的创新能力太强悍了!

  基于特性的编程模型,允许我们使用类的定义 + 特性声明的方式来定义一个具有组合能力的组件,它使得我们基于MEF编写组件变得非常非常的简单!这也让我再次体会到面向上下文编程方法的魅力~,后面我也会介绍一下我原来做过的一个基于上下文思想设计的FW,和MEF的思路有点类似。

  MEF在实现时,其顶层命名空间是System.ComponentModel.Composition,底下划分了AttributeModel、Diagnostics、Hosting、Primitives、ReflectionModel命名空间。MEF的顶层命名空间定义了我们使用最多的特性,底下命名空间分别用于定义特性模型、诊断支持、MEF宿主、组合基元、反射模型,整体实现非常的清晰简洁!看第一眼我就爱上这玩意了!

  7 、基于特性编程模型的另一个示例

  我原来设计了一个基于特性的智能体编程框架。首先,我来简洁的描述什么是智能体。智能体就是软件代理人,用软件来模拟人类的特性,包括智能性、主动性、社会性、感知性等。从实现角度来看,一个智能体就是一个绑定了线程、消息队列的对象,这个对象用线程来模拟人类大脑,用消息队列来模拟大脑记忆体。当智能体收到一条消息时,其线程会接管来处理。根据上述描述,大家肯定觉得使用OOP开发智能体有点麻烦。OK,那下面来看看我是如何使用上下文实现智能体的。

  7.1 使用特性来声明一个具有感知能力和主动性的人

  以下是代码片段:


1. [Agent] 
2. public class SomePerson
3. {
4. [Intelligent]
5. public virtual OpenTheDoor()
6. {
7. // 开门,主动性方法
8. }
9. [Sensible(Environment.Temperature)]
10. public virtual OnTemperatureChanged(SensibilityContext context)
11. {
12. // 当感知到温度变化的响应,感知性声明
13. }
14. }

  7.2 创建智能体

  以下是代码片段: 


1. var agentContainer = new AgentContainer();
2. var agent = agentContainer.Build(); //在后台构建一个真正的智能体
3. agent.OpenTheDoor(); //调用OpenTheDoor方法,这个调用最终会转变成消息发送给真正的智能体由其本身来执行,就像某人让另一人去关门一样,最终将由接收到消息的人去执行关门这个动作。

  AgentFramework具有和MEF类似的设计方法(当然咱们的内功和Microsoft那帮高手没得比了),通过定义类型 + 声明智能体特性来定义智能体,这种方式简单、灵活且可扩展性强!

时间: 2025-01-30 23:40:49

一起谈.NET技术,MEF——.NET中值得体验的精妙设计的相关文章

一起谈.NET技术,.NET 中的二进制浮点类型

大多数人会对他们在.NET中的算术的"出错"首先感到惊讶.使用一些称为"浮点"算术来表示非整型数字不是.NET 相比其他大多数语言/平台特殊的地方.在.NET 内部是没问题的,但是你需要知道一些底层正在发生什么,否则你将会对一些结果感到惊讶. 我在这个事情上不是一个专家这不重要.虽然写了这篇文章,我也发现了另外一篇 - 这次是一个真正的专家写的,杰弗里 萨克斯(Jeffrey Sax).我强烈建议你也同时读他的浮点文章. 什么是浮点数? 计算机总是需要一些表示数据的

一起谈.NET技术,C#中字符串的内存分配与驻留池

刚开始学习C#的时候,就听说CLR对于String类有一种特别的内存管理机制:有时候,明明声明了两个String类的对象,但是他们偏偏却指向同一个实例.如下: String s1 = "Hello";String s2 = "Hello"; //s2和s1的实际值都是Hellobool same = (object) s1 == (object) s2;//这里比较s1.s2是否引用了同一个对象实例//所以不能写作bool same = s1 == s2; //因为

一起谈.NET技术,C#中的委托,匿名方法和Lambda表达式

简介 在.NET中,委托,匿名方法和Lambda表达式很容易发生混淆.我想下面的代码能证实这点.下面哪一个First会被编译?哪一个会返回我们需要的结果?即Customer.ID=5.答案是6个First不仅被编译,并都获得正确答案,且他们的结果一样.如果你对此感到困惑,那么请继续看这篇文章. class Customer { public int ID { get; set; } public static bool Test(Customer x) { return x.ID == 5; }

一起谈.NET技术,.NET中的异步编程(二)- 传统的异步编程

在上一篇文章中,我们从构建响应灵敏的界面以及构建高可伸缩性的服务应用来讨论我们为什么需要异步编程,异步编程能给我们带来哪些好处.那么知道了好处,我们就开始吧,但是在异步编程这个方面,说总是比做简单.套用那句不是名言的名言:编写异步程序是困难的,编写可靠的异步程序尤其困难.因为异步程序非常难以编写,而且非常容易出错,很多基本的构造元素在异步编程中都无法使用,这让我们这些开发人员更愿意编写同步的代码,虽然我们知道有些地方真的应该使用异步. 如何实现异步 对于很多人来说,异步就是使用后台线程运行耗时的

一起谈.NET技术,VS2010中的调试技巧

这是我的博客中关于VS 2010和.NET 4发布系列的第二十六篇文章. 今天的博文将介绍Visual Studio中的一些实用调试技巧.这是受我朋友Scott Cate (他发表过几十篇很棒的VS技术文章) 启发.他最近告诉我,许多Visual Studio下的程序员,甚至一些很有经验的开发人员,都不知道这些技巧.希望这篇文章能帮你掌握这些技巧.它们都很简单,却能帮你节约大量的时间. 跳到当前光标处(Ctrl+F10) 我经常看到人们为了到达目标代码位置,而在程序中早早设定了断点,然后反复地按

一起谈.NET技术,Silverlight中自定义控件

自定义控件并不是一项多么难的技术,关于自定义控件这部分有不少文章讲的很透彻,这里我主要把自己练习自定义控件的过程记录下来. 这里我以自定义控件BusyPointer为例,首先我们新建一个应用程序,命名为CustomControl,这里我们将自定义控件放入单独的项目中,所以在解决方案里添加一个Silverlight Class Library项目,命名为BusyPointer,现在我们把Class1.cs类删除,然后在BusyPointer项目中添加一个Silverlight Template C

一起谈.NET技术,.NET 中的正则表达式

前两天面试一个程序员,自己说工作中用到过正则表达式,也比较熟悉,问他要使用正则表达式需要引用那个命名空间,使用哪些类,居然吱吱唔唔答不上来,让他写一个验证电话号码的正则表达式也写不出来,实在是很奇怪这种程序员是怎么工作了两三年的. 言归正传,下面介绍下.net中正则表达式中的使用. 要在.net中使用正则表达式,需要引用System.Text.RegularExpressions 命名空间.新建一个正则表达式类: string pattern = "some_pattern"; //正

一起谈.NET技术,C# 中奇妙的函数--联接序列的五种简单方法

今天我们来看看5种使用Linq函数联接序列的方法,这5种方法可以归入下列两类: 同类的联接 Concat() Union() 不同类的联接 Zip() Join() GroupJoin() Concat() – 串联序列 最简单的序列合并,concat仅仅是将第二个序列接在第一个序列后面, 注意:返回的序列并没有改变原来元素的顺序: 1. var healthFoods = new List<string> { "fruits", "vegetables"

一起谈.NET技术,.NET中锁6大处理方法 悲观乐观自己掌握

本文介绍了处理.NET中锁的6种方法,首先我们讨论一下并发性问题,然后讨论处理乐观锁的3种方法,乐观锁不能从根源上解决并发问题,因此后面我们介绍了悲观锁,最后介绍隔离级别如何帮助我们实现悲观锁,每个隔离级别都列举了示例进行说明,使得概念更加清晰. 我们为什么需要锁? 在多用户环境中,在同一时间可能会有多个用户更新相同的记录,这就会产生冲突,这个就是著名的并发性问题. 图 1 并行性问题漫画 如何解决并发性问题? 借助正确的锁定策略可以解决并发性问题,资源被锁定后,其它进程想要访问它就会被阻止.