《面向机器智能的TensorFlow实践》一 2.3 创建Virtualenv环境

2.3 创建Virtualenv环境

为保持依赖项的干净整洁,下面介绍如何利用Virtualenv创建虚拟的Python环境。首先需要确保Virtualenv与pip(Python的包管理器)均被安装。运行下列命令(根据操作系统的不同,选择相应的命令):

1. 64位Linux系统

 

2. Mac OS X

 

至此,准备工作已完成,接下来创建一个包含该虚拟环境的目录,以及将来可能会创建的任意虚拟环境:

 

接下来,利用Virtualevn命令创建虚拟环境。在本例中,它位于~/env/tensorflow下。

 

一旦创建完毕,便可利用source命令激活该虚拟环境:

 

我们希望当使用pip安装任何软件时都确保该虚拟环境处于活动状态,从而使Virtualenv能够对各依赖库进行追踪。

虚拟环境使用完毕后,需用下列deactivate命令将其关闭:

 

由于将频繁使用虚拟环境,创建一个激活虚拟环境的快捷方式而非每次键入完整的source...命令便很有价值。接下来的命令将向~/.bashrc文件添加一个bash别名,使在需要启动虚拟环境时只需键入tensorflow:

 

要测试该快捷方式是否生效,可重启bash终端,并键入tensorflow:

时间: 2024-10-05 08:18:36

《面向机器智能的TensorFlow实践》一 2.3 创建Virtualenv环境的相关文章

《面向机器智能的TensorFlow实践》TensorFlow与机器学习基础

本节书摘来自华章出版社<面向机器智能的TensorFlow实践>一书中的第1章,第节,作者山姆·亚伯拉罕(Sam Abrahams)丹尼亚尔·哈夫纳(Danijar Hafner)[美] 埃里克·厄威特(Erik Erwitt) 阿里尔·斯卡尔皮内里(Ariel Scarpinelli),更多章节内容可以访问"华章计算机"公众号查看. TensorFlow基础 3.1 数据流图简介 本节将脱离TensorFlow的语境,介绍一些数据流图的基础知识,内容包括节点.边和节点依赖

《面向机器智能的TensorFlow实践》引言

本节书摘来自华章出版社<面向机器智能的TensorFlow实践>一书中的第1章,第节,作者山姆·亚伯拉罕(Sam Abrahams)丹尼亚尔·哈夫纳(Danijar Hafner)[美] 埃里克·厄威特(Erik Erwitt) 阿里尔·斯卡尔皮内里(Ariel Scarpinelli),更多章节内容可以访问"华章计算机"公众号查看. 引 言2 1.1 无处不在的数据 我们正实实在在地处于"信息时代".如今,各种数据从无穷无尽的渠道不断涌入:智能手机.手

《面向机器智能的TensorFlow实践》安装TensorFlow10

本节书摘来自华章出版社<面向机器智能的TensorFlow实践>一书中的第1章,第节,作者山姆·亚伯拉罕(Sam Abrahams)丹尼亚尔·哈夫纳(Danijar Hafner)[美] 埃里克·厄威特(Erik Erwitt) 阿里尔·斯卡尔皮内里(Ariel Scarpinelli),更多章节内容可以访问"华章计算机"公众号查看. 安装TensorFlow 在开始使用TensorFlow之前,需要先将其安装到计算机中.幸运的是,TensorFlow官网提供了一份在Lin

面向机器智能的TensorFlow实践》一1.1 无处不在的数据

本节书摘来自华章出版社<面向机器智能的TensorFlow实践>一书中的第1章,第1节,作者 山姆·亚伯拉罕(Sam Abrahams)丹尼亚尔·哈夫纳(Danijar Hafner)[美] 埃里克·厄威特(Erik Erwitt)阿里尔·斯卡尔皮内里(Ariel Scarpinelli),更多章节内容可以访问"华章计算机"公众号查看. PART 1 TensorFlow 第1章 引言 第2章 安装TensorFlow     CHAPTER 1 第1章 引 言 1.1 无

《面向机器智能的TensorFlow实践》导读

目录 译者序 前言 第一部分 开启TensorFlow之旅 第1章 引言 1.1 无处不在的数据2 1.2 深度学习2 1.3 TensorFlow:一个现代的机器学习库3 1.4 TensorFlow:技术概要3 1.5 何为TensorFlow4 1.5.1 解读来自官网的单句描述4 1.5.2 单句描述未体现的内容6 1.6 何时使用TensorFlow7 1.7 TensorFlow的优势8 1.8 使用TensorFlow所面临的挑战9 1.9 高歌猛进9 第2章 安装TensorFl

《面向机器智能的TensorFlow实践》一3.2 在TensorFlow中定义数据流图

3.2 在TensorFlow中定义数据流图 在本书中,你将接触到多样化的以及相当复杂的机器学习模型.然而,不同的模型在TensorFlow中的定义过程却遵循着相似的模式.当掌握了各种数学概念,并学会如何实现它们时,对TensorFlow核心工作模式的理解将有助于你脚踏实地开展工作.幸运的是,这个工作流非常容易记忆,它只包含两个步骤: 1)定义数据流图. 2)运行数据流图(在数据上). 这里有一个显而易见的道理,如果数据流图不存在,那么肯定无法运行它.头脑中有这种概念是很有必要的,因为当你编写代

《面向机器智能的TensorFlow实践》一 2.4 TensorFlow的简易安装

2.4 TensorFlow的简易安装 如果只是希望尽快上手实践一些入门的例子,而不关心是否有GPU支持,则可从TensorFlow官方预制的二进制安装程序中择一.请确保你的Virtualenv环境处于活动状态,并运行下列与你的操作系统和Python版本对应的命令: 1. Linux 64位安装   2. Mac OS X安装   从技术角度,可以使用带有GPU支持的预制TensorFlow二进制安装程序,但它需要特定版本的NVIDIA软件,且与未来版本不兼容.

《面向机器智能的TensorFlow实践》一2.5 源码构建及安装实例:在64位Ubuntu Linux上安装GPU版TensorFlow

2.5 源码构建及安装实例:在64位Ubuntu Linux上安装GPU版TensorFlow 如果希望使用带有GPU支持的TensorFlow,那么最可能的选择是从源码构建和安装.本节给出了一个完整的安装参考实例,详细介绍了安装和运行TensorFlow所需的每一具体步骤.请注意,本示例中的操作系统为64位Ubuntu Linux发行版,因此如果你使用的是其他Linux发行版,则可能需要对某些命令进行修改(如apt-get).如果希望在Mac OS X上从源码构建TensorFlow,笔者推荐

《面向机器智能的TensorFlow实践》一2.1 选择安装环境

第2章 安装TensorFlow 在开始使用TensorFlow之前,需要先将其安装到计算机中.幸运的是,TensorFlow官网提供了一份在Linux和Mac OS X系统中安装TensorFlow的完整分步指南.本章对安装中将会出现的不同选项如何选择给出了一些建议,并提供了一些关于能够与TensorFlow很好地集成的其他第三方软件的信息.此外,本章还给出一份从源代码构建和安装TensorFlow的参考,以帮助用户安装带有GPU支持的TensorFlow. 如果用户对Pip/Conda.虚拟