惰性计算(尽可能延迟表达式求值)是许多函数式编程语言的特性。惰性集合在需要时提供其元素,无需预先计算它们,这带来了一些好处。首先,您可以将耗时的计算推迟到绝对需要的时候。其次,您可以创造无限个集合,只要它们继续收到请求,就会继续提供元素。第三,map 和 filter 等函数的惰性使用让您能够得到更高效的代码。Java 并没有为惰性提供原生支持,但一些框架和后继语言支持这种惰性,我会在本期和下期文章中探讨它们。
假定使用此伪">代码片段来打印列表的长度:
print length([2+1, 3*2, 1/0, 5-4])
如果您尝试执行此代码,结果会因为代码的编程语言类型的不同而有所不同:严格或不严格(也被称为惰性)。在严格的编程语言中,执行(或编译)此代码产生一个 DivByZero 异常,原因是列表的第三个元素。在不严格的语言中,其结果是 4,它准确地报告了列表中的项目数。毕竟,我调用的方法是 length(),而不是 lengthAndThrowExceptionWhenDivByZero()!Haskell 是为数不多的仍在使用的不严格语言。可惜的是,Java 不支持不严格的计算,但您仍然可以在 Java 中使用惰性的概念。
在 Java 中的惰性迭代器
Java 缺乏对惰性集合的原生支持,但这并不意味着您不能使用 Iterator 模拟一个惰性集合。在本系列的前几篇文章中,我使用了一个简单的素数算法来说明函数式概念。我会在 上期文章 中介绍的优化类的基础上展开本文的讨论,同时提供清单 1 中展示的增强:
清单 1. 确定素数的简单算法
import java.util.HashSet;import java.util.Set;import static java.lang.Math.sqrt;public class Prime { public static boolean isFactor(int potential, int number) { return number % potential == 0; } public static Set<Integer> getFactors(int number) { Set<Integer> factors = new HashSet<Integer>(); factors.add(1); factors.add(number); for (int i = 2; i < sqrt(number) + 1; i++) if (isFactor(i, number)) { factors.add(i); factors.add(number / i); } return factors; } public static int sumFactors(int number) { int sum = 0; for (int i : getFactors(number)) sum += i; return sum; } public static boolean isPrime(int number) { return number == 2 || sumFactors(number) == number + 1; } public static Integer nextPrimeFrom(int lastPrime) { lastPrime++; while (! isPrime(lastPrime)) lastPrime++; return lastPrime; }}
前面的一期文章 详细讨论了这个类是如何确定某个整数是否是素数的细节。在 清单 1 中,我添加了 nextPrimeFrom() 方法,根据输入的参数生成下一个素数。该方法在本文即将出现的示例中发挥了重要的作用。
一般情况下,开发人员认为迭代器会使用集合作为后备存储,但是支持 Iterator 接口的任何集合都符合这个条件。因此,我可以创建一个素数的无限迭代器,如清单 2 所示:
清单 2. 创建一个惰性迭代器
public class PrimeIterator implements Iterator<Integer> { private int lastPrime = 1; public boolean hasNext() { return true; } public Integer next() { return lastPrime = Prime.nextPrimeFrom(lastPrime); } public void remove() { throw new RuntimeException("Can't change the fundamental nature of the universe!"); }}
在 清单 2 中,hasNext() 方法始终返回 true,因为就我们目前所掌握的知识,素数的数量是无限的。remove() 方法在此处不适用,所以在意外调用情况下,会抛出一个异常。沉稳的做法是使用 next() 方法,它用一行代码处理两件事。第一,它调用我在 清单 1 中添加的 nextPrimeFrom() 方法,根据上一个素数生成下一个素数。第二,它利用了 Java 在单个语句中完成赋值与返回结果的能力,更新内部的 lastPrime 字段。我在清单 3 中执行惰性迭代器:
清单 3. 测试惰性迭代器
public class PrimeTest { private ArrayList<Integer> PRIMES_BELOW_50 = new ArrayList<Integer>() {{ add(2); add(3); add(5); add(7); add(11); add(13); add(17); add(19); add(23); add(29); add(31); add(37); add(41); add(43); add(47); }}; @Test public void prime_iterator() { Iterator<Integer> it = new PrimeIterator(); for (int i : PRIMES_BELOW_50) {
assertTrue(i == it.next()); } }}
在 清单 3中,我创建了一个 PrimeIterator,并验证它会报告前 50 个素数。虽然这不是迭代器的典型用法,但它模仿一些惰性集合的有用行为。