Python爬虫常用用法技巧

用python也差不多一年多了,python应用最多的场景还是web快速开发、爬虫、自动化运维:写过简单网站、写过自动发帖脚本、写过收发邮件脚本、写过简单验证码识别脚本。

爬虫在开发过程中也有很多复用的过程,这里总结一下,以后也能省些事情。

1、基本抓取网页

get方法

import urllib2
url  "http://www.baidu.com"
respons = urllib2.urlopen(url)
print response.read()
 
post方法
 
import urllib
import urllib2
 
url = "http://abcde.com"
form = {'name':'abc','password':'1234'}
form_data = urllib.urlencode(form)
request = urllib2.Request(url,form_data)
response = urllib2.urlopen(request)
print response.read()
2、使用代理IP

在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP;

在urllib2包中有ProxyHandler类,通过此类可以设置代理访问网页,如下代码片段:

import urllib2
 
proxy = urllib2.ProxyHandler({'http': '127.0.0.1:8087'})
opener = urllib2.build_opener(proxy)
urllib2.install_opener(opener)
response = urllib2.urlopen('http://www.baidu.com')
print response.read()
3、Cookies处理

cookies是某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密),python提供了cookielib模块用于处理cookies,cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源.

代码片段:

import urllib2, cookielib
 
cookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())
opener = urllib2.build_opener(cookie_support)
urllib2.install_opener(opener)
content = urllib2.urlopen('http://XXXX').read()
关键在于CookieJar(),它用于管理HTTP cookie值、存储HTTP请求生成的cookie、向传出的HTTP请求添加cookie的对象。整个cookie都存储在内存中,对CookieJar实例进行垃圾回收后cookie也将丢失,所有过程都不需要单独去操作。

手动添加cookie

cookie = "PHPSESSID=91rurfqm2329bopnosfu4fvmu7; kmsign=55d2c12c9b1e3; KMUID=b6Ejc1XSwPq9o756AxnBAg="
request.add_header("Cookie", cookie)
4、伪装成浏览器

某些网站反感爬虫的到访,于是对爬虫一律拒绝请求。所以用urllib2直接访问网站经常会出现HTTP Error 403: Forbidden的情况

对有些 header 要特别留意,Server 端会针对这些 header 做检查

User-Agent 有些 Server 或 Proxy 会检查该值,用来判断是否是浏览器发起的 Request

Content-Type 在使用 REST 接口时,Server 会检查该值,用来确定 HTTP Body 中的内容该怎样解析。

这时可以通过修改http包中的header来实现,代码片段如下:

import urllib2
 
headers = {
    'User-Agent':'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6'
}
request = urllib2.Request(
    url = 'http://my.oschina.net/jhao104/blog?catalog=3463517',
    headers = headers
)
print urllib2.urlopen(request).read()
5、页面解析

对于页面解析最强大的当然是正则表达式,这个对于不同网站不同的使用者都不一样,就不用过多的说明,附两个比较好的网址:

正则表达式入门

正则表达式在线测试

其次就是解析库了,常用的有两个lxml和BeautifulSoup,对于这两个的使用介绍两个比较好的网站:

lxml

BeautifulSoup

对于这两个库,我的评价是,都是HTML/XML的处理库,Beautifulsoup纯python实现,效率低,但是功能实用,比如能用通过结果搜索获得某个HTML节点的源码;lxmlC语言编码,高效,支持Xpath

6、验证码的处理

对于一些简单的验证码,可以进行简单的识别。本人也只进行过一些简单的验证码识别。但是有些反人类的验证码,比如12306,可以通过打码平台进行人工打码,当然这是要付费的。

7、gzip压缩

有没有遇到过某些网页,不论怎么转码都是一团乱码。哈哈,那说明你还不知道许多web服务具有发送压缩数据的能力,这可以将网络线路上传输的大量数据消减 60% 以上。这尤其适用于 XML web 服务,因为 XML 数据 的压缩率可以很高。

但是一般服务器不会为你发送压缩数据,除非你告诉服务器你可以处理压缩数据。

于是需要这样修改代码:

import urllib2, httplib
request = urllib2.Request('http://xxxx.com')
request.add_header('Accept-encoding', 'gzip')        1
opener = urllib2.build_opener()
f = opener.open(request)
这是关键:创建Request对象,添加一个 Accept-encoding 头信息告诉服务器你能接受 gzip 压缩数据

然后就是解压缩数据:

import StringIO
import gzip
 
compresseddata = f.read()
compressedstream = StringIO.StringIO(compresseddata)
gzipper = gzip.GzipFile(fileobj=compressedstream)
print gzipper.read()
8、多线程并发抓取

单线程太慢的话,就需要多线程了,这里给个简单的线程池模板 这个程序只是简单地打印了1-10,但是可以看出是并发的。

虽然说python的多线程很鸡肋,但是对于爬虫这种网络频繁型,还是能一定程度提高效率的。

from threading import Thread
from Queue import Queue
from time import sleep
# q是任务队列
#NUM是并发线程总数
#JOBS是有多少任务
q = Queue()
NUM = 2
JOBS = 10
#具体的处理函数,负责处理单个任务
def do_somthing_using(arguments):
    print arguments
#这个是工作进程,负责不断从队列取数据并处理
def working():
    while True:
        arguments = q.get()
        do_somthing_using(arguments)
        sleep(1)
        q.task_done()
#fork NUM个线程等待队列
for i in range(NUM):
    t = Thread(target=working)
    t.setDaemon(True)
    t.start()
#把JOBS排入队列
for i in range(JOBS):
    q.put(i)
#等待所有JOBS完成
q.join()

时间: 2024-11-16 00:10:29

Python爬虫常用用法技巧的相关文章

一些常用的Python爬虫技巧汇总_python

Python爬虫:一些常用的爬虫技巧总结 爬虫在开发过程中也有很多复用的过程,这里总结一下,以后也能省些事情. 1.基本抓取网页 get方法 import urllib2 url "http://www.baidu.com" respons = urllib2.urlopen(url) print response.read() post方法 import urllib import urllib2 url = "http://abcde.com" form = {

Python爬虫二(Urllib库的基本使用和高级用法)

转载:静觅 » Python爬虫入门三之Urllib库的基本使用 转载:静觅 » Python爬虫入门四之Urllib库的高级用法 1.分分钟扒一个网页下来 怎样扒网页呢?其实就是根据URL来获取它的网页信息,虽然我们在浏览器中看到的是一幅幅优美的画面,但是其实是由浏览器解释才呈现出来的,实质它是一段HTML代码,加 JS.CSS,如果把网页比作一个人,那么HTML便是他的骨架,JS便是他的肌肉,CSS便是它的衣服.所以最重要的部分是存在于HTML中的,下面我们就写个例子来扒一个网页下来. im

Python爬虫利器二之Beautiful Soup的用法

上一节我们介绍了正则表达式,它的内容其实还是蛮多的,如果一个正则匹配稍有差池,那可能程序就处在永久的循环之中,而且有的小伙伴们也对写正则表达式的写法用得不熟练,没关系,我们还有一个更强大的工具,叫Beautiful Soup,有了它我们可以很方便地提取出HTML或XML标签中的内容,实在是方便,这一节就让我们一起来感受一下Beautiful Soup的强大吧. 1. Beautiful Soup的简介 简单来说,Beautiful Soup是python的一个库,最主要的功能是从网页抓取数据.官

Python爬虫正则表达式常用符号和方法

正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大.得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同:但不用担心,不被支持的语法通常是不常用的部分. 1.常用符号 . :匹配任意字符,换行符 \n 除外 :匹配前一个字符0次或无限次 ? :匹配前一个字符0次或1次 .* :贪心算法,尽可能的匹配多的字符 .*? :非

Python爬虫正则表达式常用符号和方法_正则表达式

正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大.得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同:但不用担心,不被支持的语法通常是不常用的部分. 1.常用符号 . :匹配任意字符,换行符 \n 除外 :匹配前一个字符0次或无限次 ? :匹配前一个字符0次或1次 .* :贪心算法,尽可能的匹配多的字符 .*? :非

总结python爬虫抓站的实用技巧_python

前言 写过的这些脚本有一个共性,都是和web相关的,总要用到获取链接的一些方法,累积不少爬虫抓站的经验,在此总结一下,那么以后做东西也就不用重复劳动了. 1.最基本的抓站 import urllib2 content = urllib2.urlopen('http://XXXX').read() 2.使用代理服务器 这在某些情况下比较有用,比如IP被封了,或者比如IP访问的次数受到限制等等. import urllib2 proxy_support = urllib2.ProxyHandler(

收集了python常用语法技巧

收集了python常用语法技巧 1 获取本地mac地址:    import uuid    mac = uuid.uuid1().hex[-12:] 2 del 的使用    a = ['b','c','d']    del a[0]    则a = ['c','d']    del a[0:1]    则a = ['d']    del a    则a未定义 3 a = ['c',''d]    a.reverse()    a = ['d','c']    b = ','.join(a)

python回调函数用法实例分析

  这篇文章主要介绍了python回调函数用法,较为详细的分析了常用的调用方式,并实例介绍了Python回调函数的使用技巧,需要的朋友可以参考下 软件模块之间总是存在着一定的接口,从调用方式上,可以把他们分为三类:同步调用.回调和异步调用.同步调用是一种阻塞式调用,调用方要等待对方执行完毕 才返回,它是一种单向调用;回调是一种双向调用模式,也就是说,被调用方在接口被调用时也会调用对方的接口;异步调用是一种类似消息或事件的机制,不过它 的调用方向刚好相反,接口的服务在收到某种讯息或发生某种事件时,

python 爬虫教程

转载http://blog.csdn.net/freeking101/article/details/62893343 爬虫入门初级篇 IDE 选择 PyCharm(推荐).SublimeText3.VS2015.wingIDE 装python2还是python3 python社区需要很多年才能将现有的模块移植到支持python3. django web.py flask等还不支持python3.所以推荐安装python2 最新版. Windows 平台 从 http://python.org/