跻身数据科学领域的五条职业规划道路

预备阅读

在我们继续深入之前,读一读这些文章。我是说真的,读,这些,文章。

  • 解析数据科学谜题

    (http://www.kdnuggets.com/2016/03/data-science-puzzle-explained.html)

  • 再析数据科学谜题

    (http://www.kdnuggets.com/2017/01/data-science-puzzle-revisited.html)

  • 解析数据科学和大数据

    (http://www.kdnuggets.com/2016/11/big-data-data-science-explained.html)

  • 预测性科学 VS 数据科学

    (http://www.kdnuggets.com/2016/11/predictive-science-vs-data-science.html)

第一篇文章概览数据科学中一些最主要的概念,而第二篇文章则是今年早些时候对这些概念的更新。第三篇文章更深入地解析了数据科学和大数据之中的概念。最后一篇文章对比了一些其他术语,对“数据科学”这个术语的复杂性和微妙性进行了简短的探讨。

我将众多的职业可能性拆分成五条能够轻松掌控的道路。虽然可能有很多人强烈反对这种角色划分并且因此感到恐慌,但它确实对技能和职业责任进行了高度的分类。因此,我相信接下来的内容能有效地帮助新来者在这个专业领域中所存在的令人混淆和迷惑的无数机会之中确认方向。

分析性职业的粗略分析(点击图片放大)

数据管理专员

这本质上是一个IT职业,类似于数据库管理员。数据管理专员被认为和管理数据以及支持数据管理的设施有关。这个职位和数据分析只有很少关联,也类似Python和R语言的使用也不是很必要。可能会用到SQL语言,以及和Hadoop相关的查询语言,比如Hive和Pig。

关键技术以及需要关注的技能:

  • Apache Hadoop和它的生态系统
  • Apache Spark和它的生态系统
  • SQL以及关系数据库
  • NoSQL数据库


延伸阅读:

  • 解析大数据关键术语

    (http://www.kdnuggets.com/2016/08/big-data-key-terms-explained.html)

  • 解析数据库关键术

    (http://www.kdnuggets.com/2016/07/database-key-terms-explained.html)

  • 解析Hadoop关键术语

    (http://www.kdnuggets.com/2016/05/hadoop-key-terms-explained.html)

  • 解析Apache Spark关键术语

    (http://www.kdnuggets.com/2016/06/spark-key-terms-explained.html)

  • 解析云计算关键术语

    (http://www.kdnuggets.com/2016/06/cloud-computing-key-terms-explained.html)

  • 七步理解NoSQL数据库(http://www.kdnuggets.com/2016/07/seven-steps-understanding-nosql-databases.html)
  • 七步掌握数据科学所需的SQL

    (http://www.kdnuggets.com/2016/06/seven-steps-mastering-sql-data-science.html)

数据工程师

这是一条非分析大数据职业道路。记得在刚刚的职业道路之中提到的数据设施吗?是的,它们需要被设计和执行,数据工程师就承担了这部分工作。如果说数据管理专员是汽车修理师,那么数据工程师就是汽车工程师。不过不要搞错了,这两个角色都对你的汽车的行驶和持续工作至关重要,对你从A点驾驶到B点同样重要。

说句实话,数据工程师和数据管理专员所需要的技术和技能是相似的,然而,他们各自在不同的层次理解和使用同样的概念。我不会重复之前一种职业中所提到的那些信息(所有这些信息对数据工程师都很重要),但我会专门给数据工程师补充延伸阅读的清单。

延伸阅读:

  • 顶级NoSQL数据库引擎

    (http://www.kdnuggets.com/2016/06/top-nosql-database-engines.html)

  • 顶级大数据处理框架

    (http://www.kdnuggets.com/2016/03/top-big-data-processing-frameworks.html)

  • 顶级Spark系统环境项

    (http://www.kdnuggets.com/2016/03/top-spark-ecosystem-projects.html)

  • Hadoop和大数据:对于前六大问题的回答

    (http://www.kdnuggets.com/2016/01/hadoop-and-big-data-questions.html)

  • 为什么数据科学家和数据工程师需要理解云中的虚拟化

    (http://www.kdnuggets.com/2017/01/data-scientist-engineer-understand-virtualization-cloud.html)

商业分析师

在本文里,商业分析师指的是与数据分析和数据呈现紧密相关的角色。包括报告,仪表板和任何被称为“商业智能”的东西。 这种角色通常要求与关系数据库和非关系数据库以及大数据框架的交互(或查询)。

虽然前两种角色与设计基础设施来管理数据以及实际管理数据有关,但商业分析师主要关注从那些或多或少存在的数据中提取信息。 这与以下两个角色(机器学习研究者/从业者和以数据为导向的专业人员)形成对比,两者都侧重于从数据或数据以外已知的一些表面信息中获得洞察力。 因此,商业分析师需要在所呈现的这些角色中具有独特的技能。

关键技术以及需要关注的技能:

  • SQL和关系型数据库
  • NoSQL数据库
  • 经常会用到商业报告和仪表盘封装技术
  • 报告从本质来讲是没有固定模式的,快速掌握工具的使用是关键
  • 数据仓库

延伸阅读:

  • 2016年人工智能的10大趋势

    (http://www.kdnuggets.com/2015/12/10-business-intelligence-trends-2016.html)

  • 嵌入式分析:人工智能的未来

    (http://www.kdnuggets.com/2016/09/embedded-analytics-future-business-intelligence.html)

  • 自建还是购买–分析表盘(可视化分析)

    (http://www.kdnuggets.com/2016/07/build-buy-analytics-dashboards.html)

机器学习研究员/从业者

机器学习研究人员和从业者指的是那些制作和使用预测和相关工具进行数据利用的人。 机器学习算法允许以较高的速度应用统计分析,并且那些操作这些算法的人不满足于让数据以其当前形式呈现出来。 数据询问是机器学习爱好者的工作方式,但是具有足够的统计理解才能知道何时推进的足够远,以及什么时候提供的答案不可信。

统计和编程是机器学习研究者和实践者最大的财富。

关键技术以及需要关注的技能:

  • 统计学!
  • 代数与演算(从业者的中级水平,研究员的高级水平)
  • 编程技能:Python,C ++或其他一些通用语言
  • 学习理论(从业者的中级,研究员的高级水平)
  • 理解机器学习算法的内部工作原理(算法越多越好,理解越深越好!)
  • 原文发布时间为:2017-03-13
时间: 2024-10-21 15:33:18

跻身数据科学领域的五条职业规划道路的相关文章

《数据科学家修炼之道》一2.1 数据科学领域的历史

2.1 数据科学领域的历史 "数据科学"这一术语的流行要早于"大数据"的出现(就像"数据"一词要早于"计算机(computer)"400年出现).1962年,当John W. Tukey[1]写了<数据分析的未来>(The Future of Data Analysis)[2],他预见了数据分析的新方法的崛起相比于方法论来说更像是一门科学.1974年,Peter Naur在瑞典和美国出版了<计算机方法的简明调

图解数据科学领域的职位划分以及职责技能

随着数据科学领域的招聘信息越来越多,范围也越来越广.Datacamp根据最新的数据科学相关招聘信息,全面的了解各个行业之间数据科学领域每个职位角色之间的差异,以及所赋予的工作职责. 最主要分为以下几个职位:数据科学家.数据分析师.数据架构师.数据工程师.统计学家.数据库管理员.业务数据分析师.数据产品经理.下面通过信息图区分每个职位的角色介绍.必备语言技能. 1. 数据科学家  角色/任务 清洗,管理和组织(大)数据 必备语言 R,SAS,Python,Matlab,SQL,HivePig,Sp

2017年安全数据科学领域的4个趋势

安全数据科学正在蓬勃发展,有报告显示安全分析市场将在2023年达到八十亿美元的价值, 26%的增长率.这要感谢不屈不挠的网络攻击.如果你想要在2017年走在不断涌现的安全威胁的前面,那么投资在正确的领域是很重要的.在2016年3月,我写了一篇<2016年需要注意的4个趋势>.而2017年的文章由我与来自Netflix的Cody Rioux合作,带来他的平台化视角.我们的目标是帮助你为2017年的每一个季度形成一个计划(例如,4个季度有4个趋势).对于每一个趋势,我们都提供了一个短小精悍的理论基

偏见为什么是数据科学领域的一个大问题

如今,市场对数据科学家的需求是巨大的.但是也有不利之处,因为有偏见的数据,其所面临的风险也是巨大的.数据科学家凯西·奥尼尔为此创建了数据科学家的一个伦理政策. 人们可能不知道,数据科学有一个潜在的黑暗面,这是许多企业所忽视的东西.在当今社会,庞大的数据量对数据科学家造成巨大需求的时候,数据科学家凯西·奥尼尔不久撰写一本著作,名为"数字破坏武器:大数据如何增加不平等和威胁民主".她担心的是,在急于利用大数据的情况下,可能会因为内置偏差使得结论不准确,并且可能具有相当的破坏性.她与高级技术

半导体、显示、通讯、大数据等领域的十三五规划要点汇总

1.传媒篇:互联网.教育获政策加码,行业发展空间进一步打开 作者:钟奇.孙小雯 事件:3月5日,<国民经济和社会发展第十三个五年规划纲要(草案)>正式出炉,纲要指出"实现城乡宽带网络全覆盖"."完善新一代高速光纤网络,构建先进泛在的无线宽带网-推进宽带网络提速降费"."实施义务教育学校标准化.普及高中阶段教育.建设世界一流大学和一流学科等工程",我们认为互联网以及教育行业继续受益政策支持,可积极关注相关的投资机会. 加速提高互联网宽带

因职业角色而异的十大数据科学技能

数据科学的实践需要三个一般领域的技能:商业洞察.计算机技术/编程和统计学/数学.与询问对象有关,具体的重要技能集合总是在变化.Dave Holts描述了得到数据科学家工作所需要的技能,Ferris Jumah通过检查带有"数据科学家"称号的LinkedIn个人资料识别10项技能,BurtchWorks提供了他们的在数据科学领域中获得成功至关 重要的技能列表,RJMetrics也使用LinkedIn数据找出了20个重要的数据科学技能.这些列表.重要技能反映了数据专业人员在他们社交媒体资

8个最新的美国数据科学项目简介

对国外数据科学院校.专业感兴趣的朋友可以给文摘后台留言,留下你的微信号,我们建群讨论. 1.印第安纳大学数据科学在线认证 印第安纳大学在2014年1月开始提供在线数据科学专业,该项目提供多种多样的课程,能让学生各取所需.项目要求你修满12个学分,包括云计算.数据管理和数据分析课程. 具体信息: 本项目会教授这个兴新领域里你所需要知道的概念和技能:数据收集,数据管理和建设,数据分析和数据可视化.有以下一些3学分的课程可供选择: 大数据运用与分析 数据密集型科学的云计算 信息可视化 大数据在药物开发

数据科学行业的8个关键角色:职责与技能

前言 第二届世界互联网大会的召开,将大数据战略推向了又一高潮,许多与数据相关的职位如雨后春笋般涌现,数据科学家.数据分析师.数据架构师.统计学家.数据库管理员.商业分析师和数据分析经理等.但是,许多业界人士表示分不清这些职位的区别,企业在招聘人员时,进行职位描述与岗位职责编写时略显混乱,应聘者在应聘这些职位时也不清楚这些这位的进入门槛.今天,大数据文摘将向大家推出8张数据科学相关职位信息图以及1张跟这些职位有关的薪酬信息图,带你了解数据科学行业的进入门槛与岗位职责. 引子 一天晚上,我和一位朋友

2017数据科学与机器学习行业现状调查 Python是最受欢迎的语言

今年,Kaggle有史以来第一次对人工智能领域进行了深度调查,旨在全面了解数据科学和机器学习的概况.本次调查收到了 16000 多份答卷,庞大的调查数据为我们提供了有关从业者.业界最新动态以及如何进入该行业的数据支撑.以下报告包括本次调查的几个主要结果,其中包括: 尽管Python很可能是机器学习最常用的编程语言,但统计学家使用最多的是 R 语言. 数据科学家的平均年龄在 30 岁左右,但是这个数字在不同的国家有所不同.例如,印度受访者的平均年龄要比澳大利亚的小 9 岁. 被调查者教育程度最多是