floyd算法实现思路及实例代码_C 语言

正如我们所知道的,Floyd算法用于求最短路径。Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3)。

Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

很简单吧,代码看起来可能像下面这样:

复制代码 代码如下:

for ( int i = 0; i < 节点个数; ++i )
{
    for ( int j = 0; j < 节点个数; ++j )
    {
        for ( int k = 0; k < 节点个数; ++k )
        {
            if ( Dis[i][k] + Dis[k][j] < Dis[i][j] )
            {
                // 找到更短路径
                Dis[i][j] = Dis[i][k] + Dis[k][j];
            }
        }
    }
}

但是这里我们要注意循环的嵌套顺序,如果把检查所有节点X放在最内层,那么结果将是不正确的,为什么呢?因为这样便过早的把i到j的最短路径确定下来了,而当后面存在更短的路径时,已经不再会更新了。

让我们来看一个例子,看下图:

图中红色的数字代表边的权重。如果我们在最内层检查所有节点X,那么对于A->B,我们只能发现一条路径,就是A->B,路径距离为9。而这显然是不正确的,真实的最短路径是A->D->C->B,路径距离为6。造成错误的原因就是我们把检查所有节点X放在最内层,造成过早的把A到B的最短路径确定下来了,当确定A->B的最短路径时Dis(AC)尚未被计算。所以,我们需要改写循环顺序,如下:

复制代码 代码如下:

for ( int k = 0; k < 节点个数; ++k )
{
    for ( int i = 0; i < 节点个数; ++i )
    {
        for ( int j = 0; j < 节点个数; ++j )
        {
            if ( Dis[i][k] + Dis[k][j] < Dis[i][j] )
            {
                // 找到更短路径
                Dis[i][j] = Dis[i][k] + Dis[k][j];
            }
        }
    }
}

这样一来,对于每一个节点X,我们都会把所有的i到j处理完毕后才继续检查下一个节点。

那么接下来的问题就是,我们如何找出最短路径呢?这里需要借助一个辅助数组Path,它是这样使用的:Path(AB)的值如果为P,则表示A节点到B节点的最短路径是A->...->P->B。这样一来,假设我们要找A->B的最短路径,那么就依次查找,假设Path(AB)的值为P,那么接着查找Path(AP),假设Path(AP)的值为L,那么接着查找Path(AL),假设Path(AL)的值为A,则查找结束,最短路径为A->L->P->B。

那么,如何填充Path的值呢?很简单,当我们发现Dis(AX) + Dis(XB) < Dis(AB)成立时,就要把最短路径改为A->...->X->...->B,而此时,Path(XB)的值是已知的,所以,Path(AB) = Path(XB)。

好了,基本的介绍完成了,接下来就是实现的时候了,这里我们使用图以及邻接矩阵:

复制代码 代码如下:

#define INFINITE 1000           // 最大值
#define MAX_VERTEX_COUNT 20   // 最大顶点个数
//////////////////////////////////////////////////////////////////////////

struct Graph
{
    int     arrArcs[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];    // 邻接矩阵
    int     nVertexCount;                                 // 顶点数量
    int     nArcCount;                                    // 边的数量
};
//////////////////////////////////////////////////////////////////////////
首先,我们写一个方法,用于读入图的数据:

void readGraphData( Graph *_pGraph )
{
    std::cout << "请输入顶点数量和边的数量: ";
    std::cin >> _pGraph->nVertexCount;
    std::cin >> _pGraph->nArcCount;

    std::cout << "请输入邻接矩阵数据:" << std::endl;
    for ( int row = 0; row < _pGraph->nVertexCount; ++row )
    {
        for ( int col = 0; col < _pGraph->nVertexCount; ++col )
        {
            std::cin >> _pGraph->arrArcs[row][col];
        }
    }
}

接着,就是核心的Floyd算法:

复制代码 代码如下:

void floyd( int _arrDis[][MAX_VERTEX_COUNT], int _arrPath[][MAX_VERTEX_COUNT], int _nVertexCount )
{
    // 先初始化_arrPath
    for ( int i = 0; i < _nVertexCount; ++i )
    {
        for ( int j = 0; j < _nVertexCount; ++j )
        {
            _arrPath[i][j] = i;
        }
    }
    //////////////////////////////////////////////////////////////////////////

    for ( int k = 0; k < _nVertexCount; ++k )
    {
        for ( int i = 0; i < _nVertexCount; ++i )
        {
            for ( int j = 0; j < _nVertexCount; ++j )
            {
                if ( _arrDis[i][k] + _arrDis[k][j] < _arrDis[i][j] )
                {
                    // 找到更短路径
                    _arrDis[i][j] = _arrDis[i][k] + _arrDis[k][j];

                    _arrPath[i][j] = _arrPath[k][j];
                }
            }
        }
    }
}

OK,最后是输出结果数据代码:

复制代码 代码如下:

void printResult( int _arrDis[][MAX_VERTEX_COUNT], int _arrPath[][MAX_VERTEX_COUNT], int _nVertexCount )
{
    std::cout << "Origin -> Dest   Distance    Path" << std::endl;

    for ( int i = 0; i < _nVertexCount; ++i )
    {
        for ( int j = 0; j < _nVertexCount; ++j )
        {
            if ( i != j )   // 节点不是自身
            {
                std::cout << i+1 << " -> " << j+1 << "\t\t";
                if ( INFINITE == _arrDis[i][j] )    // i -> j 不存在路径
                {
                    std::cout << "INFINITE" << "\t\t";
                }
                else
                {
                    std::cout << _arrDis[i][j] << "\t\t";

                    // 由于我们查询最短路径是从后往前插,因此我们把查询得到的节点
                    // 压入栈中,最后弹出以顺序输出结果。
                    std::stack<int> stackVertices;
                    int k = j;

                    do
                    {
                        k = _arrPath[i][k];
                        stackVertices.push( k );
                    } while ( k != i );
                    //////////////////////////////////////////////////////////////////////////

                    std::cout << stackVertices.top()+1;
                    stackVertices.pop();

                    unsigned int nLength = stackVertices.size();
                    for ( unsigned int nIndex = 0; nIndex < nLength; ++nIndex )
                    {
                        std::cout << " -> " << stackVertices.top()+1;
                        stackVertices.pop();
                    }

                    std::cout << " -> " << j+1 << std::endl;
                }
            }
        }
    }
}

好了,是时候测试了,我们用的图如下:

测试代码如下:

复制代码 代码如下:

int main( void )
{
    Graph myGraph;
    readGraphData( &myGraph );
    //////////////////////////////////////////////////////////////////////////

    int arrDis[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];
    int arrPath[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];

    // 先初始化arrDis
    for ( int i = 0; i < myGraph.nVertexCount; ++i )
    {
        for ( int j = 0; j < myGraph.nVertexCount; ++j )
        {
            arrDis[i][j] = myGraph.arrArcs[i][j];
        }
    }

    floyd( arrDis, arrPath, myGraph.nVertexCount );
    //////////////////////////////////////////////////////////////////////////

    printResult( arrDis, arrPath, myGraph.nVertexCount );
    //////////////////////////////////////////////////////////////////////////

    system( "pause" );
    return 0;
}

如图:

时间: 2024-10-25 10:47:41

floyd算法实现思路及实例代码_C 语言的相关文章

C语言 奇偶排序算法详解及实例代码_C 语言

C语言奇偶排序算法 奇偶排序,或奇偶换位排序,或砖排序,是一种相对简单的排序算法,最初发明用于有本地互连的并行计算.这是与冒泡排序特点类似的一种比较排序.该算法中,通过比较数组中相邻的(奇-偶)位置数字对,如果该奇偶对是错误的顺序(第一个大于第二个),则交换.下一步重复该操作,但针对所有的(偶-奇)位置数字对.如此交替进行下去. 使用奇偶排序法对一列随机数字进行排序的过程 处理器数组的排序 在并行计算排序中,每个处理器对应处理一个值,并仅有与左右邻居的本地互连.所有处理器可同时与邻居进行比较.交

C 语言快速排序实例代码_C 语言

快速排序是对冒泡法排序的一种改进. 快速排序算法 的基本思想是:将所要进行排序的数分为左右两个部分,其中一部分的所有数据都比另外一 部分的数据小,然后将所分得的两部分数据进行同样的划分,重复执行以上的划分操作,直 到所有要进行排序的数据变为有序为止. 可能仅根据基本思想对快速排序的认识并不深,接下来以对n个无序数列A[0], A[1]-, A[n-1]采用快速排序方法进行升序排列为例进行讲解. (1)定义两个变量low和high,将low.high分别设置为要进行排序的序列的起始元素和最后一个元

VC++简单实现关机、重启计算机实例代码_C 语言

本文以一个实例形式介绍了VC++简单实现关机.重启计算机的方法,代码比较实用,有一定的参考价值.完整实例代码如下: void CWebBrowserView::OnMenuShutdown() { // TODO: 在此添加命令处理程序代码 if (AfxMessageBox("确定要关机吗?",MB_YESNO) == IDYES) { HANDLE hToken; TOKEN_PRIVILEGES tkp; // Get a token for this process. if (

C语言之实现控制台光标随意移动的实例代码_C 语言

原理引入windows.h,首先是要获得输入的东西,然后通过判断: 1.方向键:执行上下左右的移动功能 2 .回车键:执行换行的功能. 3.普通键:输入功能. 终点就是要获取到屏幕上的坐标,当按下了方向键以后,坐标值+1,或者减一,从而实现了光标的自由移动. //C语言实现控制台中光标随意移动 #include <stdio.h> #include <windows.h> #include <conio.h> HANDLE hout; //获得输入 char getIn

C++ string 字符串查找匹配实例代码_C 语言

在写C++程序中,总会遇到要从一个字符串中查找一小段子字符串的情况,对于在C中,我们经常用到strstr()或者strchr()这两种方法.而对于C++的string,我们往往会用到find(). C++:#inlcude<string> C: #include<string.h> find():在一个字符串中查找一个指定的单个字符或字符数组.如果找到,就返回首次匹配的开始位置:如果没有查找到匹配的内容,就返回string::npos. find_first_of():在一个目标串

使用C++的string实现高精度加法运算的实例代码_C 语言

对于超大数字的运算,用long long int仍然不能解决,这时候就需要考虑通过模拟运算和数组存储来实现高精度运算. 本文讨论借助C++的string来实现高精度的运算. 首先输入的量直接存储为string,设为s1和s2. 接下来设计一个反转函数,用于把整个字符串反转(为了方便后续计算). string reverseStr(string input){ string output = ""; for(int i = 0; i < input.length(); i++){

C++ 继承详解及实例代码_C 语言

C++继承可以是单一继承或多重继承,每一个继承连接可以是public,protected,private也可以是virtual或non-virtual.然后是各个成员函数选项可以是virtual或non-virtual或pure virtual.本文仅仅作出一些关键点的验证. public继承,例如下: 1 class base 2 {...} 3 class derived:public base 4 {...} 如果这样写,编译器会理解成类型为derived的对象同时也是类型为base的对象

c语言实现输入一组数自动从大到小排列的实例代码_C 语言

如下所示: #include <stdio.h> main() { int x; printf("请输入要排序数字个数:"); scanf("%d",&x); int i,j,k,a,b,num[x]; printf("输入数据:"); for(i=0;i<x;i++) scanf("%d",&num[i]); for(j=0;j<x;j++) { for(k=j+1;k<x;k+

C语言对堆排序一个算法思路和实现代码_C 语言

算法思想简单描述: 堆排序是一种树形选择排序,是对直接选择排序的有效改进. 堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆.在这里只讨论满足前者条件的堆. 由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项.完全二叉树可以很直观地表示堆的结构.堆顶为根,其它为左子树.右子树. 初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的