Convolutional Neural Networks for Sentence Classification

本篇将分享一个有监督学习句子表示的方法,文章是Convolutional Neural Networks for Sentence Classification,作者是Harvard NLP组的Yoon Kim,并且开源了代码 sent-conv-torch。

卷积神经网络(CNN)在计算机视觉中应用广泛,其捕捉局部feature的能力非常强,为分析和利用图像数据的研究者提供了极大额帮助。本文作者将CNN引用到了NLP的文本分类任务中。

本文模型架构图:

熟悉CNN结构的童鞋们看这个图就会非常眼熟,单通道图像可以表示为一个矩阵,输入到CNN中,经过多组filter层和pooling层,得到图像的局部特征,然后进行相关任务。本文用拼接词向量的方法,将一个句子表示成为一个矩阵,这里矩阵的每一行表示一个word,后面的步骤仅采用一组filter、pooling层来得到句子的特征向量,然后进行分类。

这里,模型根据词向量的不同分为四种:

  • CNN-rand,所有的词向量都随机初始化,并且作为模型参数进行训练。
  • CNN-static,即用word2vec预训练好的向量(Google News),在训练过程中不更新词向量,句中若有单词不在预训练好的词典中,则用随机数来代替。
  • CNN-non-static,根据不同的分类任务,进行相应的词向量预训练。
  • CNN-multichannel,两套词向量构造出的句子矩阵作为两个通道,在误差反向传播时,只更新一组词向量,保持另外一组不变。

在七组数据集上进行了对比实验,证明了单层的CNN在文本分类任务中的有效性,同时也说明了用无监督学习来的词向量对于很多nlp任务都非常有意义。

这里需要注意的一点是,static模型中word2vec预训练出的词向量会把good和bad当做相似的词,在sentiment classification任务中将会导致错误的结果,而non-static模型因为用了当前task dataset作为训练数据,不会存在这样的问题。具体可参看下图:

CNN最初应用在图像领域,将文本进行一些处理之后,也可以应用在nlp中,同样的思路,attention mechanism最初也是应用在图像识别领域中,现在seq2seq+attention的模型横扫了很多nlp task。其实很多问题在某个维度上看,是相似的问题,是可以用类似的方法进行解决的。

来源:paperweekly

原文链接

时间: 2024-10-28 10:05:38

Convolutional Neural Networks for Sentence Classification的相关文章

Recurrent Convolutional Neural Networks for Text Classification

介绍了CNN表示文本的模型之后,本篇将会分享一篇用CNN结合RNN的模型来表示文本.paper题目是Recurrent Convolutional Neural Networks for Text Classification,作者是来自中科院大学的来斯惟博士. 本文要解决的问题是文本分类,文本分类最关键的问题是特征表示,传统的方法经常会忽略上下文信息和词序,无法捕捉到词义.近几年随着深度学习的火热,研究者们通过借助神经网络模型来解决传统方法存在的问题.比如:Socher提出的Recursive

论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

  Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016   本文提出了一种新的CNN 框架来处理跟踪问题.众所周知,CNN在很多视觉领域都是如鱼得水,唯独目标跟踪显得有点"慢热",这主要是因为CNN的训练需要海量数据,纵然是在ImageNet 数据集上微调后的model 仍然不足以很好的表达要跟踪地物体,因为Tracking问题的特殊性,至于怎么特殊的,且听细细道来. 目标跟

(zhuan) Building Convolutional Neural Networks with Tensorflow

Ahmet Taspinar  Home About Contact Building Convolutional Neural Networks with Tensorflow Posted on augustus 15, 2017 adminPosted in convolutional neural networks, deep learning, tensorflow 1. Introduction In the past I have mostly written about 'cla

(转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolutional Neural Networks Part 2 Introduction Link to Part 1                 In this post, we'll go into a lot more of the specifics of ConvNets. Disclaimer:

论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

  Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper   Project Page:http://guanghan.info/projects/ROLO/ GitHub:https://github.com/wangxiao5791509/ROLO 摘要:本文提出了一种新的方法进行空间监督 RCNN 来进行目标跟踪.我们通过深度神经网络来学习到

(zhuan) Attention in Long Short-Term Memory Recurrent Neural Networks

Attention in Long Short-Term Memory Recurrent Neural Networks by Jason Brownlee on June 30, 2017 in Deep Learning   The Encoder-Decoder architecture is popular because it has demonstrated state-of-the-art results across a range of domains. A limitati

(转)Understanding, generalisation, and transfer learning in deep neural networks

  Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   This is the first in a series of posts looking at the 'top 100 awesome deep learning papers.' Deviating from the normal one-paper-per-day format, I'll

循环神经网络(RNN, Recurrent Neural Networks)介绍

循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解.   循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Proce

(zhuan) How to Train Neural Networks With Backpropagation

this blog from: http://blog.demofox.org/2017/03/09/how-to-train-neural-networks-with-backpropagation/   How to Train Neural Networks With Backpropagation Posted on March 9 2017 by Demofox This post is an attempt to demystify backpropagation, which is