1、问题描述:
给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?
形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
2、最优性原理:
设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则(y2,…,yn)是下面相应子问题的一个最优解:
证明:使用反证法。若不然,设(z2,z3,…,zn)是上述子问题的一个最优解,而(y2,y3,…,yn)不是它的最优解。显然有
∑vizi > ∑viyi (i=2,…,n)
且 w1y1+ ∑wizi<= c
因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)
说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的一个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,矛盾。
3、递推关系:
设所给0-1背包问题的子问题
的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。由0-1背包问题的最优子结构性质,可以建立计算m(i,j)的递归式:
注:(3.4.3)式此时背包容量为j,可选择物品为i。此时在对xi作出决策之后,问题处于两种状态之一:
(1)背包剩余容量是j,没产生任何效益;
(2)剩余容量j-wi,效益值增长了vi ;
使用递归C++代码如下:
#include<iostream> using namespace std; const int N=3; const int W=50; int weights[N+1]={0,10,20,30}; int values[N+1]={0,60,100,120}; int V[N+1][W+1]={0}; int knapsack(int i,int j) { int value; if(V[i][j]<0) { if(j<weights[i]) { value=knapsack(i-1,j); } else { value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i])); } V[i][j]=value; } return V[i][j]; } int main() { int i,j; for(i=1;i<=N;i++) for(j=1;j<=W;j++) V[i][j]=-1; cout<<knapsack(3,50)<<endl; cout<<endl; }
不使用递归的C++代码:简单一点的修改http://www.cppblog.com/Geek/archive/2009/12/02/102393.html
//3d10-1 动态规划 背包问题 #include <iostream> using namespace std; const int N = 4; void Knapsack(int v[],int w[],int c,int n,int m[][10]); void Traceback(int m[][10],int w[],int c,int n,int x[]); int main() { int c=8; int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始 int x[N+1]; int m[10][10]; cout<<"待装物品重量分别为:"<<endl; for(int i=1; i<=N; i++) { cout<<w[i]<<" "; } cout<<endl; cout<<"待装物品价值分别为:"<<endl; for(int i=1; i<=N; i++) { cout<<v[i]<<" "; } cout<<endl; Knapsack(v,w,c,N,m); cout<<"背包能装的最大价值为:"<<m[1][c]<<endl; Traceback(m,w,c,N,x); cout<<"背包装下的物品编号为:"<<endl; for(int i=1; i<=N; i++) { if(x[i]==1) { cout<<i<<" "; } } cout<<endl; return 0; } void Knapsack(int v[],int w[],int c,int n,int m[][10]) { int jMax = min(w[n]-1,c);//背包剩余容量上限 范围[0~w[n]-1] for(int j=0; j<=jMax;j++) { m[n][j]=0; } for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c] { m[n][j] = v[n]; } for(int i=n-1; i>1; i--) { jMax = min(w[i]-1,c); for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c { m[i][j] = m[i+1][j];//没产生任何效益 } for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c { m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi } } m[1][c] = m[2][c]; if(c>=w[1]) { m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]); } } //x[]数组存储对应物品0-1向量,0不装入背包,1表示装入背包 void Traceback(int m[][10],int w[],int c,int n,int x[]) { for(int i=1; i<n; i++) { if(m[i][c] == m[i+1][c]) { x[i]=0; } else { x[i]=1; c-=w[i]; } } x[n]=(m[n][c])?1:0; }
运行结果:
算法执行过程对m[][]填表及Traceback回溯过程如图所示:
从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。当背包容量c很大时,算法需要的计算时间较多。例如,当c>2^n时,算法需要Ω(n2^n)计算时间。