1.讨论下列广义积分的一致收敛性:
(1)
$\displaystyle \int_0^{ + \infty } {{e^{ - \left( {1 + {a^2}} \right)t}}\sin t\rd
t} ,\quad a \in \left( { - \infty , + \infty } \right)$;
(2)
$\displaystyle \int_0^{ + \infty } {\frac{{\cos xy}}{{\sqrt {x + y} }}\rd x}
,\quad y \in \left[ {{y_0}, + \infty } \right)$,其中$y_0>0$;
(3)
$\displaystyle \int_0^{ + \infty } {{e^{ - t{x^2}}}\rd x} ,\quad t \in \left(
{0, + \infty } \right)$;
(4)
$\displaystyle \int_1^{ + \infty } {{e^{ - \alpha x}}\frac{{\cos x}}{{\sqrt x
}}\rd x} ,\quad \alpha \in \left[ {0, + \infty } \right)$;
(5)
$\displaystyle \int_0^{ + \infty } {{e^{ - {{\left( {x - y} \right)}^2}}}\rd x}
,\quad y \in \left( { - \infty , + \infty } \right)$;
(6)
$\displaystyle \int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}\rd x}$,$\quad$ (1)
$t\in [t_0,+\infty)$,其中$t_0>0$,$\quad$ (2)
$t\in (0,+\infty)$;
(7)
$\displaystyle \int_1^{ + \infty } {\frac{{1 - {e^{ - ut}}}}{t}\cos t\rd t}
,\quad u \in \left[ {0,1} \right]$;
(8)
$\displaystyle \int_0^{ + \infty } {\frac{{\alpha t}}{{1 + {\alpha ^2} +
{t^2}}} \cdot {e^{ - {\alpha ^2}{t^2}}}\cos {\alpha ^2}{t^2}\rd t} ,\quad
\alpha \in \left( {0, + \infty } \right)$;
(9)
$\displaystyle \int_0^{ + \infty } {{e^{ - {x^2}\left( {1 + {y^2}}
\right)}}\sin y\rd y} ,\quad x \in \left( {0, + \infty } \right)$;
(10)
$\displaystyle \int_0^{ + \infty } {\frac{{\alpha \rd x}}{{1 + {\alpha
^2}{x^2}}}} ,\quad \alpha \in \left( {0,1} \right)$;
(11)
$\displaystyle \int_0^2 {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left(
{x - 2} \right)}}}}\rd x} ,\quad \left| t \right| < \frac{1}{2}$;
(12)
$\displaystyle \int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}\rd x}$,$\quad$ (1)
$u\in [a,+\infty)$,其中$a>0$,$\quad$ (2)
$u\in (0,+\infty)$.
解.
(1) 一致收敛.由于
\[\left|
{{e^{ - \left( {1 + {a^2}} \right)t}}\sin t} \right| \le {e^{ - t}},\quad 0 \le
t < + \infty , - \infty < a < + \infty ,\]
而$\int_0^{ + \infty } {{e^{ - t}}\rd t} = 1$收敛,由Weierstrass判别法知, $\int_0^{ + \infty } {{e^{ - \left( {1 +
{a^2}} \right)t}}\sin t\rd t}$在$\left( { - \infty , +
\infty } \right)$上一致收敛.
(2) 一致收敛.由于
\[\left|
{\int_0^A {\cos xy\rd x} } \right| = \left| {\frac{{\sin Ay}}{y}} \right| \le
\frac{1}{y} \le \frac{1}{{{y_0}}}, \quad A \ge 0,y \ge {y_0},\]
因此它在$[y_0,+\infty)$一致有界.而$1/\sqrt{x+y}$是$x$的单调减少函数且$0<1/\sqrt{x+y}\leq 1/\sqrt{x+y_0}$,而$\lim_{x\to +\infty}
\frac{1}{\sqrt{x+y_0}}=0$, 故这个极限关于$y$在$[y_0,+\infty)$上是一致的.于是由Dirichlet判别法知$\int_0^{ +
\infty } {\frac{{\cos xy}}{{\sqrt {x + y} }}\rd x} $在$\left[ {{y_0}, + \infty } \right)$上一致收敛.
(3) 非一致收敛.对于正整数$n$,取$t_n=\frac1{n^2}$,这时
\begin{align*}\left|
{\int_n^{2n} {{e^{ - {t_n}{x^2}}}\rd x} } \right| &= \int_n^{2n} {{e^{ -
\frac{1}{{{n^2}}}{x^2}}}\rd x} > \int_n^{2n} {{e^{ -
\frac{1}{{{n^2}}}{{\left( {2n} \right)}^2}}}\rd x} \\&= \int_n^{2n} {{e^{ -
4}}\rd x} = {e^{ - 4}}n \ge {e^{ - 4}}.\end{align*}
因此,只要取$\varepsilon_0=e^{-4}$,则对于任意大的正数$A_0$,总存在正整数$n$满足$n>A_0$,及$t_n=1/n^2\in
(0,+\infty)$,使得$\left| {\int_n^{2n}
{{e^{ - {t_n}{x^2}}}\rd x} } \right| > {e^{ - 4}} = {\varepsilon _0}$.由Cauchy收敛原理的推论可知$\int_0^{ +
\infty } {{e^{ - t{x^2}}}\rd x} $关于$t$在$\left( {0, + \infty } \right)$上非一致收敛.
(4) $\int_1^A
{\cos x\rd x}$显然有界, $1/\sqrt{x}$在$[1,+\infty)$上单调且$\lim_{x\to
+\infty}\frac{1}{\sqrt{x}}=0$,由Dirichlet判别法, $\int_1^{+\infty}\frac{\cos x}{\sqrt{x}}$收敛,它当然关于$\alpha$一致收敛.显然$e^{-\alpha
x}$关于$x$单调,且\[0\leq
e^{-\alpha x}\leq 1,\quad 0\leq \alpha<+\infty,1\leq x<+\infty,\]即$e^{-\alpha x}$一致有界.由Abel判别法, $\int_1^{
+ \infty } {{e^{ - \alpha x}}\frac{{\cos x}}{{\sqrt x }}\rd x}$在$\left[ {0, + \infty } \right)$上一致收敛.
(5) 不一致收敛.注意到$\displaystyle
J\left( A \right) = \int_A^{2A} {{e^{ - {{\left( {x - y} \right)}^2}}}\rd x} =
\int_{A - y}^{2A - y} {{e^{ - {u^2}}}du}$,并让$y$取$A$值,则得$\displaystyle J\left( A \right) = \int_0^A
{{e^{ - {u^2}}}du} \to \int_0^{ + \infty } {{e^{ - {u^2}}}du} \left( {A \to +
\infty } \right)$,即$J(A)$在$A\to +\infty$时不趋于$0$.
(6) 先证明$\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}\rd
x}$在$[t_0,+\infty)(t_0>0)$上一致收敛.由于
\[\left|
{x\ln x{e^{ - t\sqrt x }}} \right| \le \left| {x\ln x} \right|{e^{ - {t_0}\sqrt
x }},\quad 0\leq x<+\infty,t_0\leq t<+\infty,\]
而$\int_0^1 {x\ln \frac{1}{x}{e^{ - {t_0}\sqrt x
}}\rd x}$与$\int_1^{ + \infty }
{x\ln x{e^{ - {t_0}\sqrt x }}\rd x}$均收敛,由Weierstrass判别法知,
$\int_0^{
+ \infty } {x\ln x{e^{ - t\sqrt x }}\rd x}$在$[t_0,+\infty)$上一致收敛.
再证明$\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}\rd
x}$在$(0,+\infty)$上非一致收敛.对于正整数$n$,取$t_n=\frac{1}{\sqrt{n}}$,这时
\begin{align*}&\left|
{\int_n^{2n} {x\ln x{e^{ - {t_n}\sqrt x }}\rd x} } \right| = \left|
{\int_n^{2n} {x\ln x{e^{ - \frac{1}{{\sqrt n }}\sqrt x }}\rd x} }
\right|\\>& n\ln n\int_n^{2n} {{e^{ - \frac{1}{{\sqrt n }}\sqrt x }}\rd
x} > n\ln n\int_n^{2n} {{e^{ - \frac{1}{{\sqrt n }}\sqrt {2n} }}\rd x}
\\=& {n^2}\ln n \cdot {e^{ - \sqrt 2 }} \ge 4\ln 2 \cdot {e^{ - \sqrt 2
}}.\end{align*}
因此,只要取${\varepsilon
_0} = 4\ln 2 \cdot {e^{ - \sqrt 2 }}$,则对于任意大的正数$A_0$,总存在正整数$n$满足$n>A_0$,及$y_n=\frac1{\sqrt n}\in (0,+\infty)$,使得$\left| {\int_n^{2n} {x\ln x{e^{ - {t_n}\sqrt
x }}\rd x} } \right| > 4\ln 2 \cdot {e^{ - \sqrt 2 }}=\varepsilon_0$.由Cauchy收敛原理的推论知$\int_0^{ +
\infty } {x\ln x{e^{ - t\sqrt x }}\rd x}$关于$t$在$(0,+\infty)$上非一致收敛.
(7) 一致收敛.由于$\int_1^{ +
\infty } {\frac{{\cos t}}{t}\rd t}$收敛,它当然关于$u$一致收敛.显然$1-e^{-ut}$关于$t$单调,且
\[0\leq
1-e^{-ut}\leq 1,\quad 0\leq u\leq1,1\leq t<+\infty,\]即$1-e^{-ut}$一致有界.由Abel判别法, $\int_1^{
+ \infty } {\frac{{1 - {e^{ - ut}}}}{t}\cos t\rd t}$在$\left[ {0,1} \right]$上一致收敛.
(8) 一致收敛.由于\[\left|
{\int_0^A {\alpha t \cdot {e^{ - {\alpha ^2}{t^2}}}\cos {\alpha ^2}{t^2}\rd t}
} \right| \le \int_0^A {\alpha t \cdot {e^{ - {\alpha ^2}{t^2}}}\rd t} =
\frac{{1 - {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }},\]且\[\mathop {\lim }\limits_{\alpha \to 0} \frac{{1
- {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }} = 0,\mathop {\lim }\limits_{\alpha
\to + \infty } \frac{{1 - {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }} = 0,\]
因此它在$(0,+\infty)$一致有界,而$\frac{1}{{1 + {\alpha ^2} + {t^2}}}$是$x$的单调减少函数且$\frac{1}{{1
+ {\alpha ^2} + {t^2}}} \le \frac{1}{{1 + {t^2}}},\lim_{t\to
\infty}\frac1{1+t^2}=0$,因此$\lim_{t\to
+\infty}\frac{1}{{1 + {\alpha ^2} + {t^2}}}=0$关于$\alpha$在$(0,+\infty)$上是一致的,于是由Dirichlet判别法知$\int_0^{ +
\infty } {\frac{{\alpha t}}{{1 + {\alpha ^2} + {t^2}}} \cdot {e^{ - {\alpha
^2}{t^2}}}\cos {\alpha ^2}{t^2}\rd t}$在$\left( {0,
+ \infty } \right)$上一致收敛.
(9) 非一致收敛.对于正整数$n$,取${x_n} = \frac{1}{{\sqrt {1 + {{\left( {2n +
1} \right)}^2}{\pi ^2}} }}$,这时
\begin{align*}\left|
{\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {{e^{ - x_n^2\left( {1 + {y^2}}
\right)}}\sin y\rd y} } \right| &= \left| {\int_{2n\pi }^{\left( {2n + 1}
\right)\pi } {{e^{ - \frac{1}{{1 + {{\left( {2n + 1} \right)}^2}{\pi
^2}}}\left( {1 + {y^2}} \right)}}\sin y\rd y} } \right|\\&>
\frac{1}{e}\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {\sin y\rd y} =
\frac{2}{e}.\end{align*}
因此,只要取$\varepsilon_0=2/e$,则对于任意大的正数$A_0$,总存在正整数$n$满足$2n\pi>A_0$,及$y_n=\frac{1}{{\sqrt
{1 + {{\left( {2n + 1} \right)}^2}{\pi ^2}} }} \in (0,+\infty)$,使得$\left| {\int_{2n\pi }^{\left( {2n + 1}
\right)\pi } {{e^{ - x_n^2\left( {1 + {y^2}} \right)}}\sin y\rd y} } \right|
> \frac{2}{e}=\varepsilon_0$.由Cauchy收敛原理的推论知$\int_0^{ + \infty } {{e^{ - {x^2}\left( {1 +
{y^2}} \right)}}\sin y\rd y} $关于$x$在$\left( {0, + \infty } \right)$上非一致收敛.
(10) 非一致收敛.对于任意取定的正数$A$,由于\[\int_A^{ + \infty } {\frac{{\alpha \rd x}}{{1
+ {\alpha ^2}{x^2}}}} = \frac{\pi }{2} - \arctan \left( {\alpha A} \right),\]取$\alpha=1/A$,则有\[\int_A^{
+ \infty } {\frac{{\alpha \rd x}}{{1 + {\alpha ^2}{x^2}}}} = \int_A^{ + \infty
} {\frac{{1/A}}{{1 + {x^2}/{A^2}}}\rd x} = \frac{\pi }{4} .\]因此$\int_0^{ + \infty } {\frac{{\alpha \rd x}}{{1
+ {\alpha ^2}{x^2}}}}$在$\left( {0,1} \right)$上不一致收敛.
(11) 一致收敛.见周民强207页.利用
当$0<x<1$时,我们有
\[0
\le \left| {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2}
\right)}}}}} \right| < \frac{1}{{\sqrt x \sqrt[3]{{\left( {x - 1}
\right)\left( {x - 2} \right)}}}}.\]
当$1<x<2$时,有
\[0
\le \left| {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2}
\right)}}}}} \right| < \frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1}
\right)\left( {2 - x} \right)}}}}.\]
因此有
\[\int_0^2
{\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}\rd
x} < \int_0^1 {\frac{1}{{\sqrt x \sqrt[3]{{\left( {1 - x} \right)\left( {2 -
x} \right)}}}}\rd x} + \int_1^2 {\frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1}
\right)\left( {2 - x} \right)}}}}\rd x} .\]
注意到下列渐近估计
\begin{align*}{\frac{1}{{\sqrt
x \sqrt[3]{{\left( {1 - x} \right)\left( {2 - x} \right)}}}}} &= O\left(
{\frac{1}{{\sqrt x }}} \right),x \to {0^ + },\\{\frac{1}{{\sqrt x
\sqrt[3]{{\left( {1 - x} \right)\left( {2 - x} \right)}}}}} &= O\left(
{\frac{1}{{\sqrt[3]{{x - 1}}}}} \right),x \to 1,\\\frac{{\sqrt x
}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}} &= O\left(
{\frac{1}{{\sqrt[3]{{x - 1}}}}} \right),x \to 1,\\\frac{{\sqrt x
}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}} &= O\left(
{\frac{1}{{\sqrt[3]{{2 - x}}}}} \right),x \to 2,\end{align*}
可知右端积分均收敛.由Weierstrass判别法可知,原积分关于$|t|<1/2$一致收敛.
(12) 先证明$\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}\rd
x}$在$[a,+\infty)(a>0)$上一致收敛.由于\[{\left(
{1 - x} \right)^{u - 1}} \le {\left( {1 - x} \right)^{a - 1}},\quad 0 \le x \le
1,a \le u < + \infty,\]而$\int_0^1 {{{\left( {1
- x} \right)}^{a - 1}}\rd x} = \frac{1}{a}$收敛,由Weierstrass判别法知, $\int_0^1
{{{\left( {1 - x} \right)}^{u - 1}}\rd x}$在$[a,+\infty)$上一致收敛.
再证明$\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}\rd
x}$在$(0,+\infty)$上非一致收敛.对于任意取定的正数$A$且$A\to 0$,由于\[\int_A^1
{{{\left( {1 - x} \right)}^{u - 1}}\rd x} = \frac{1}{A},\]
取$u=A\in (0,+\infty )$,当$A$足够小时,我们有\[\int_A^1 {{{\left( {1 - x} \right)}^{u - 1}}\rd
x} = \frac{{{{\left( {1 - A} \right)}^u}}}{u} = \frac{{{{\left( {1 - A}
\right)}^A}}}{A} > 1.\]因此$\int_0^1 {{{\left( {1
- x} \right)}^{u - 1}}\rd x}$在$(0,+\infty)$上非一致收敛.
2.设$\displaystyle \int_0^{ + \infty } {{x^\lambda
}f\left( x \right)\rd x}$当$\lambda=a,\lambda=b$时收敛$(a<b)$.证明$\displaystyle
\int_0^{ + \infty } {{x^\lambda }f\left( x \right)\rd x}$当$\lambda=a,\lambda=b$关于$\lambda\in [a,b]$一致收敛.
证.这题来自菲哥第二册P577.积分$\int_0^1 {{x^a}f\left( x \right)\rd x}$是收敛的,而$x^{\lambda-a}$对于$\lambda\geq a$的值是$x$的单调函数,并以$1$为界.因此积分
\[\int_0^1
{{x^\lambda }f\left( x \right)\rd x} = \int_0^1 {{x^{\lambda - a}} \cdot
{x^a}f\left( x \right)\rd x} \]关于$\lambda$一致收敛.类似地可以看出以下积分
\[\int_1^{
+ \infty } {{x^\lambda }f\left( x \right)\rd x} = \int_1^{ + \infty }
{{x^{\lambda - b}} \cdot {x^b}f\left( x \right)\rd x} ,\]
关于$\lambda\leq b$一致收敛.因此原积分一致收敛.
3.证明积分$\int_0^{ + \infty } {x{e^{ - xy}}\rd y}$在$(0,+\infty)$上不一致收敛.
证.对于任意取定的正数$A$,由于
\[\int_A^{
+ \infty } {x{e^{ - xy}}\rd y} = {e^{ - Ax}},\]
取$x=1/A\in (0,+\infty)$,则有
\[\int_A^{
+ \infty } {x{e^{ - xy}}\rd y} = \frac{1}{e}.\]因此$\int_0^{ +
\infty } {x{e^{ - xy}}\rd y}$在$(0,+\infty)$上不一致收敛.
源自: http://www.math.org.cn/forum.php?mod=viewthread&tid=35406 [未验证其正确性, 仅供参考]