(170331) [南开大学 2014 年高等代数考研试题] 设 $\sigma,\tau$ 为线性变换, 且 $\sigma$ 有 $n$ 个不同的特征值. 证明: 若 $\sigma\tau=\tau\sigma$, 则 $\tau$ 可由 $I$, $\sigma$, $\sigma^2$, $\cdots$, $\sigma^{n-1}$ 线性表出, 其中 $I$ 为恒等变换.
(170330) [南开大学 2014 年高等代数考研试题] 设 $A$ 为对称矩阵, 存在线性无关的向量 $x_1,x_2$, 使得 $x_1^tAx_1>0$, $x_2^tAx_2<0$. 证明: 存在线性无关的向量 $x_3,x_4$ 使得 $x_1,x_2,x_3,x_4$ 线性相关, 且 $x_3^tAx_3=x_4^tAx_4=0$.
(170329) [南开大学 2014 年高等代数考研试题] 设 $A$ 为 $s\times n$ 矩阵. 证明: $$\bex s-\r(E_s-AA^t)=n-\r(E_n-A^tA). \eex$$
(170328) [南开大学 2014 年高等代数考研试题] 设 $n$ 阶行列式 $$\bex \sev{\ba{cccc} a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn} \ea}=1, \eex$$ 且满足 $a_{ij}=-a_{ji},\ i,j=1,2,\cdots,n$. 对任意的 $x$, 求 $n$ 阶行列式 $$\bex \sev{\ba{cccc} a_{11}+x&\cdots&a_{1n}+x\\ \vdots&\ddots&\vdots\\ a_{n1}+x&\cdots&a_{nn}+x \ea}. \eex$$
(170327) 设 $f$ 是 $[0,1]$ 上的连续可微函数, 满足 $f(0)=f(1)=0$. 试证: $$\bex \sez{\int_0^1 f(x)\rd x}^2\leq \f{1}{12}\int_0^1 |f'(x)|^2\rd x, \eex$$ 且等号成立当且仅当 $f(x)=Ax(1-x)$, 其中 $A$ 是常数.
(170326) [熊金城点集拓扑习题3-2-01] 设 $(X,\rho)$ 是一个度量空间, 证明映射 $\rho:X\times X\to \bbR$ 是一个连续映射.
(170325) [熊金城点集拓扑习题3-1-02] 如果 $Y$ 是拓扑空间 $X$ 的一个开 (闭) 子集, 则 $Y$ 作为 $X$ 的子空间时特别地被称为 $X$ 的开 (闭) 子空间. 证明: (1) 如果 $Y$ 是拓扑空间 $X$ 的一个开子空间, 则 $A\subset Y$ 是 $Y$ 中的一个开集当且仅当 $A$ 是 $X$ 的一个开集; (2) 如果 $Y$ 是拓扑空间 $X$ 的一个闭子空间, 则 $A\subset Y$ 是 $Y$ 中的一个闭集当且仅当 $A$ 是 $X$ 的一个闭集.
(170324) [熊金城点集拓扑习题2-6-07] 设 $X$ 是一个度量空间. 证明: 如果 $X$ 有一个基只含有有限个元素, 则 $X$ 必为含有有限多个点的离散空间.
(170323) [熊金城点集拓扑习题2-5-02] 设 $X$ 是一个拓扑空间, $A,B\subset X$. 证明: (1) $A^-=A\cup \p A$, $A^o=A\bs \p A$; (2) $\p (A^o)\subset \p A$, $\p (A^-)\subset \p A$; (3) $\p (A\cup B)\subset \p A\cup \p B$, $(A\cup B)^o\supset A^o\cup B^o$; (4) $\p A=\vno$ 当且仅当 $A$ 是一个既开又闭的集合; (5) $\p(\p A)\subset \p A$; (6) $A\cap B\cap \p (A\cap B)=A\cap B\cap (\p A\cup \p B)$.
(170322) [熊金城点集拓扑习题2-4-01] 求集合的导集和闭包: (1) 设 $A$ 是有限补空间 $X$ 中的一个无限子集, 求 $A$ 的导集和闭包; (2) 设 $A$ 是可数补空间 $X$ 中的一个不可数子集, 求 $A$ 的导集和闭包; (3) 求实数空间 $\bbR$ 中的有理数集 $\bbQ$ 的导集和闭包; (4) 设 $X^*$ 是 $\S 2.2$ 习题 9 中定义的拓扑空间, 求单点集 $\sed{\infty}$ 的导集和闭包.
(170321) [熊金城点集拓扑习题2-2-10] 试证: (1) 从拓扑空间到平庸空间的任何映射都是连续映射; (2) 从离散空间到拓扑空间的任何映射都是连续映射.
(170320) [熊金城点集拓扑习题2-1-01] 设 $\si,\si':\bbR\times \bbR\to\bbR$ 使得对任意 $x,y\in\bbR$, 有 $\si(x,y)=(x-y)^2$ 和 $\si'(x,y)=|x^2-y^2|$. 证明 $\si$ 和 $\si'$ 都不是 $\bbR$ 的度量.
(170319) 设 $A$ 为 $m\times n$ 矩阵, $\r(A)=k$, 证明: (1) 若 $A=A_1+A_2+\cdots+A_l$, 且 $\r(A_i)=1, i=1,2,\cdots,l$, 则 $l\geq k$; (2) 存在秩为 $1$ 的矩阵 $A_1,A_2,\cdots,A_k$ 使得 $A=A_1+A_2+\cdots+A_k$.
(170318) [熊金城点集拓扑习题1-7-02] 设 $A$ 是实数集合 $\bbR$ 的一个子集, 她包含着某个非退化的开区间, 即存在 $a,b\in\bbR$, $a<b$, 使得 $A\supset (a,b)$. 证明 $\card A=\aleph$.
(170317) [熊金城点集拓扑习题1-5-01] 设 $X,Y$ 是两个集合, $f: X\to Y$. 试证: (1) 对于任意 $A\subset X$, $$\bex A\subset f^{-1}(f(A)); \eex$$ (2) 对于任意 $B\subset Y$, $$\bex B\supset f(f^{-1}(B)), \eex$$ (3) $f$ 是一个满射当且仅当 $$\bex B= f(f^{-1}(B)) \eex$$ 对于任何 $B\subset Y$ 成立.
(170316) [熊金城点集拓扑习题1-4-04] 实数集合 $\bbR$ 中第一个关系 $R$ 定义为 $$\bex R=\sed{(x,y)\in\bbR^2;\ x-y\in \bbZ}. \eex$$ 证明 $R$ 是一个等价关系.
(170315) [熊金城点集拓扑习题1-3-03] 设 $X=\sed{a,b,c}$, $Y=\sed{d,e,f,g}$, $R=\sed{(a,d),(a,e),(b,f)}$, $A=\sed{a,c}$, $B=\sed{d,e,g}$. 试求 $R(A)$, $R^{-1}(B)$, $R$ 的值域与定义域.
(170314) [南京师范大学2010年常微分方程复试试题] 设 $f(x)$ 是 $(a,+\infty)$ 上的连续函数, 且 $$\bex \vlmp{x}f(x)=L, \eex$$ $x_0>a$ 是一常数, $k$ 是一正常数. 求初值问题 $$\bex \seddm{ y'+ky=f(x)\\ y(x_0)=y_0 } \eex$$ 的解, 并计算该解当 $x\to +\infty$ 时的极限.
(170313) [南京师范大学2010年常微分方程复试试题] 当 $a$ 取何值时, 边值问题 $$\bex \seddm{ y''(x)+ay(x)=1\\ y(0)=y(1)=0 } \eex$$ 没有解.
(170312) 设 $R$ 是集合 $X$ 上的等价关系; $p:X\to X/R$ 是自然映射; 对 $i=1,2$, $p_i:X\times X\to X$ 是第 $i$ 个投射, 也即 $$\bex p_1(x,y)=x,\quad p_2(x,y)=y,\ \forall\ (x,y)\in X\times X. \eex$$ 试证: $$\bex p^{-1}[p(A)]=p_2[p_1^{-1}(A)\cap R],\ \forall\ A\subset X. \eex$$ (170312解答)
(170311) 试证: $$\bex \arctan a-\arctan b>\f{a-b}{\sqrt{1+a^2}\sqrt{1+b^2}},\quad \forall\ a>b>0. \eex$$
(170310) A represented matroid is a pair $M=(E,U)$ consisting of a finite set $E$ together with a subspace $U$ of $\bbF^E$. We say that a matrix $A$ generates a represented matroid $M=(E,U)$ if $U$ is the row-space of $A$; the represented matroid generated by $A$ is denoted $M(A)$. 不是很懂, 但是也可稍微翻译下: 一个可表示拟阵 $M=(E,U)$ 由一个有限集 $E$ 和 $\bbF^E$ 的一个子空间构成. 我们说一个矩阵 $A$ 生成一个可表示拟阵 $M=(E,U)$ 如果 $U$ 是 $A$ 的行向量; 记 $A$ 生成的可表示拟阵为 $M(A)$. 理解: 首先, 要知道 $\bbF^E$ 是指集合 $E$ 到数域 $\bbF$ 的所有映射全体构成的集合, 也即 $$\bex \bbF^E=\sed{f:E\to \bbF}. \eex$$ (实变或拓扑我不太记得是否用过这个记号...). 其次, 数域 $\bbF$ 上的 $m\times n$ 矩阵 $A$ 如果写成行向量的形式 $$\bex A=\sexm{ \al_1\\\vdots\\\al_m}, \eex$$ 那么可选 $$\bex E=\sed{1,\cdots,n},\quad U=\sed{\al_1,\cdots,\al_m}, \eex$$ 其中每个 $\al_i$ 因为有 $n$ 个分量 $(a_{i1},\cdots,a_{in})$, 而可看成 $E$ 到 $\bbF$ 的映射 $$\bex \ba{cccc} \al_i:&E&\to&\bbF\\ &j&\mapsto&a_{ij}. \ea \eex$$ 这样, $\al_i\in \bbF^E$, $U\subset\bbF^E$.
(170309) 相遇和作别有很多种, 最棒的莫过于温暖一笑, 急人之难, 临去时挥一挥手, 道声再见.
(170308) 生活就是一种永恒的沉重的努力. (米兰.昆德拉)
(170307) 年轻人不守时是永远迟到; 老年人不守时是永远早到.
(170306) 很多时候, 我们本来是上网找一个东西, 结果看着看着, 看别的东西去了, 一个广告有兴趣, 点开来; 一个没见过的词, 查下; 等等. 结果半天后, 自己要找的东西还没开始弄了. 这就是知识的迷宫. 为此, 一定要有明确的目标, 摒弃一切杂念.
(170305) 礼尚往来, 来而不往非礼也. 注重的是礼节和礼数, 而非礼物的价值本身.
(170304) 在传统熟人社会, 决定人们关系的主要是血缘和地缘这种天然纽带; 但在计划经济体制下, 能帮你排除困难的人或能给你带制造困难的人, 才是你最重要的社会资源.
(170303) 人世间最美好的礼物是来自陌生人的善意.
(170302) 学生要体验 ``学而时习之'' 的快乐, 必须放弃手机拍照而手写. 老师要做到 ``温故而知新'', 也要少用PPT 而多板书.
(170301) 设矩阵 $A=(a_{ij})_{n\times n}$, $B=(b_{ij})_{n\times n}$, 定义 $C=(a_{ij}b_{ij})_{n\times n}$. 证明: 若 $A,B$ 半正定, 则 $C$ 半正定.